Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Thị Hoàng Yến
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 12 2018 lúc 7:33

\(P=3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\ge2\sqrt{3x.\dfrac{12}{x}}+2\sqrt{y.\dfrac{16}{y}}+2.6=32\)

\(\Rightarrow P_{min}=32\) khi \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Ngân Võ Thi Thu
Xem chi tiết
Kiệt Nguyễn
10 tháng 9 2019 lúc 14:32

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #

zZz Cool Kid_new zZz
Xem chi tiết
Nguyễn Linh Chi
26 tháng 7 2019 lúc 15:09

Gợi ý nhé!  Tách rồi sử dụng Cauchy cho hai số ko âm

\(P=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\)

\(\ge2\sqrt{3.12}+2\sqrt{16}+2.6=32\)

"=" xảy ra <=> x=2; y=4

Nguyễn Văn Hưởng
26 tháng 7 2019 lúc 15:11

Ta có : \(P=5x+3y+\frac{12}{x}+\frac{16}{y}\) 

\(P=2\left(x+y\right)+\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)\)  

Áp dụng BĐT Cô-si, ta có: \(3x+\frac{12}{x}\ge2\sqrt{\left(3.12\right)}=12\) 

\(y+\frac{16}{y}\ge2\sqrt{\left(1.16\right)}=8\) 

Ta có: \(x+y\ge6\) 

\(\Rightarrow2\left(x+y\right)\ge12\) 

\(\Rightarrow P\ge12+12+8=32\)

Dấu''='' xảy ra khi:

 \(3x=\frac{12}{x}\) , \(x+y=6\) , \(y=\frac{16}{y}\) 

\(\Rightarrow x=2,y=4\)

Vậy giá trị nhỏ nhất của P là 32 khi x = 2, y = 4

Lương Ngọc Anh
Xem chi tiết
Nguyễn Tuấn
29 tháng 4 2016 lúc 20:08

theo gt

11x+6y+2015=0

x-y+3=0=>x=y-3

thay vô biến đổi chút là ra

Đoàn Phong
Xem chi tiết
Võ Đông Anh Tuấn
29 tháng 8 2016 lúc 17:43

P=5x+3y+12/x+16/y 
=3x+12/x+y+16/y+2(x+y) 
áp dụng cosi: 3x+12/x>=2√(3.12)=12 
y+16/y>=8 
lại có 2(x+y)>=2.6=12 
nên 
P>=12+8+12=32 
dấu = khi 3x=12/x và y=16/y và x+y=6 
==> x=2; y=4 
giá trị nhỏ nhất P=32 khi x=2; y=4

Lê Nguyên Hạo
29 tháng 8 2016 lúc 17:50

Ta có: \(x+y\ge6\Rightarrow x\ge6-y\)

Vậy GTNN của x là 6 - y.

Thay 6 - y vào biểu thức đã rút gọn có:

\(A=-2y^3+42y^2-176y-96\)

Giả sử y = 0, ,=> P = -232

Do y > 0 nên P > -232

Vậy: \(Min_P=-232\)

Ngô Tấn Đạt
29 tháng 8 2016 lúc 20:13

Ta có : \(x+y\ge6\Rightarrow x\ge6-y\\ \)

Vậy GTNN của x là 6-y

Thay \(6-y\) vào biểu thức đã rút gọn có : 

\(A=-2y^3+42y^2-176y-96\\ \)

Giả sử \(y=0\Rightarrow P=-232\)

Do \(y>0\) nên \(P>-232\)

Vậy Min \(P=-232\)

Nguyễn Anh Khoa
Xem chi tiết
Phước Nguyễn
20 tháng 7 2016 lúc 19:44

Áp dụng bất đẳng thức  \(AM-GM\)  đối với từng bộ số trong  \(D\)  ta có:

\(D=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{3x.\frac{12}{x}}+2\sqrt{y.\frac{16}{y}}+2.6=32\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(\hept{\begin{cases}x+y=6\\3x=\frac{12}{x}\\y=\frac{16}{y}\end{cases}\Leftrightarrow}\)  \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy,  GTNN của  \(D\)  là  \(32\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Thức Nguyễn Văn
Xem chi tiết
Phạm Thế Mạnh
3 tháng 1 2016 lúc 13:41

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

phan tuấn anh
3 tháng 1 2016 lúc 11:01

phải là \(\le12\)

Nguyễn Anh Khoa
Xem chi tiết
Lương Ngọc Anh
20 tháng 7 2016 lúc 8:55

Hỏi đáp Toán

Kha Mi
Xem chi tiết