Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Anh
Xem chi tiết
Ngô Duy Anh
1 tháng 11 2016 lúc 20:05

mày điên à, làm gì có câu hỏi kiểu này?

hakaioh
1 tháng 11 2016 lúc 20:11

mày bị điên rồi hả câu hỏi thế này làm gì có người giải được

Đinh Minh Quang
1 tháng 11 2016 lúc 21:26

mày hỏi cô giáo ấy

Minh Anh
Xem chi tiết
Nguyễn Thiều Công Thành
31 tháng 10 2016 lúc 18:40

cái áp dụng là Schawrts chứ

tth_new
12 tháng 8 2020 lúc 8:39

BĐT sau đây vẫn đúng: \(\Sigma a\left(a-c\right)\left(a-b\right)\ge abc\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}-3\right)+\frac{16\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a+b+c\right)^3}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Nguyễn Minh Đăng
9 tháng 4 2021 lúc 23:05

Đặt \(\left(a;b;c\right)=\left(\frac{x}{y}k;\frac{y}{z}k;\frac{z}{x}k\right)\) \(k\inℝ^+\)

Bất đẳng thức cần chứng minh tương đương:

\(\frac{1}{\frac{x}{y}k\left(\frac{y}{z}k+1\right)}+\frac{1}{\frac{y}{z}k\left(\frac{z}{x}k+1\right)}+\frac{1}{\frac{z}{x}k\left(\frac{x}{y}k+1\right)}\ge\frac{3}{\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\left(1+\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\right)}\)

\(\Leftrightarrow\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\ge\frac{3}{k\left(1+k\right)}\) (D)

Ta có: \(\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\)

\(=\frac{\left(yz\right)^2}{xyzk\left(yk+z\right)}+\frac{\left(zx\right)^2}{xyzk\left(zk+x\right)}+\frac{\left(xy\right)^2}{xyzk\left(xk+y\right)}\)

\(\ge\frac{\left(xy+yz+zx\right)^2}{xyzk\left(xk+yk+zk+x+y+z\right)}\) (Bất đẳng thức Bunyakovsky dạng phân thức)

\(\ge\frac{3\left(xyz^2+xy^2z+x^2yz\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3xyz\left(x+y+z\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3}{k\left(k+1\right)}\)

=> BĐT (D) đúng => đpcm

Dấu "=" xảy ra khi: \(a=b=c\)

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
30 tháng 4 2020 lúc 21:02

\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)

\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)

Áp dụng BĐT Cosi ta có:

\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)

Từ (1)(2)(3) ta có:

\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)

Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)

Dấu "=" xảy ra <=> a=b=c=1

Khách vãng lai đã xóa
Kamado Tanjiro
3 tháng 5 2020 lúc 7:25

CHÚC BAN HỌC GIỎI

Khách vãng lai đã xóa
Phạm Bảo Nam
4 tháng 5 2020 lúc 16:20

đây\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Khách vãng lai đã xóa
Nguyễn Lâm Ngọc
Xem chi tiết
Kiệt Nguyễn
14 tháng 3 2020 lúc 20:36

\(BĐT\Leftrightarrow\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\ge abc\)

\(+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)

Đặt \(P=\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)

Áp dụng BĐT Bunhiacopski:

\(\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)\ge\left(\text{ Σ}_{cyc}ab\sqrt{ab}\right)^2\)

\(\Rightarrow P\ge ab\sqrt{ab}+bc\sqrt{bc}+ca\sqrt{ca}\)(1)

Lại áp dụng BĐT Bunhiacopski:

\(\left(a^2b+b^2c+c^2a\right)\left(bc^2+ca^2+ab^2\right)\ge\left(3abc\right)^2\)

\(\Rightarrow P\ge3abc\)(2)

Tiếp tục áp dụng BĐT Bunhiacopski:

\(\left(a^2b+b^2c+c^2a\right)\left(ca^2+b^2a+c^2b\right)\ge\left(\text{Σ}_{cyc}a^2\sqrt{bc}\right)^2\)

\(\Rightarrow P\ge a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}\)(3)

Từ (1), (2), (3) suy ra \(3P\ge3abc+\left[\text{Σ}_{cyc}\left(a^2\sqrt{bc}+bc\sqrt{bc}\right)\right]\)

Sử dụng một số phép biến đổi và bđt Cô - si cho 3 số , ta được:

\(3P\ge3abc+3\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)

\(\Rightarrow P\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)

hay \(\sqrt{\left(a^2b+b^2c+c^2\right)\left(ab^2+bc^2+ca^2\right)}\)

\(\ge abc+\sqrt[3]{abc\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\)

Dấu "=" khi a = b = c > 0

P/S: Không biết đúng không nữa, chưa check lại

Khách vãng lai đã xóa
Nguyen Duc Huy
7 tháng 6 2020 lúc 21:06

ko biết

Khách vãng lai đã xóa
lý canh hy
Xem chi tiết
Thắng Nguyễn
14 tháng 9 2018 lúc 23:30

chia abc

Đen đủi mất cái nik
15 tháng 9 2018 lúc 20:49

Do abc khác 0 nên ta chia cả 2 vế của bđt cho abc. Ta được:

\(\sqrt{\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(a+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)

\(\Leftrightarrow\sqrt{3+\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}+\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(1+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)

ĐẶT: \(x=\frac{bc}{a^2};y=\frac{ca}{b^2};z=\frac{ab}{c^2}\Rightarrow xyz=1\)

KHI ĐÓ TA CẦN CHỨNG MINH:

\(\sqrt{3+x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge1+\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Leftrightarrow\sqrt{3+x+y+z+xy+yz+zx}\ge1+\sqrt[3]{2+x+y+z+xy+yz+zx}\)

ĐẶT : \(t=\sqrt[3]{2+x+y+z+xy+yz+zx}\)

ÁP DỤNG BĐT AM-GM TA CÓ:

\(x+y+z+xy+yz+zx\ge6\sqrt[6]{xyz.xy.yz.zx}=6\)        (DO xyz=1)

\(\Rightarrow t\ge\sqrt[3]{2+6}=2\)

VẬY BẤT ĐẲNG THỨC ĐÃ CHO TƯƠNG ĐƯƠNG VỚI:

\(\sqrt{t^3+1}\ge1+t\Leftrightarrow t^3+1\ge t^2+2t+1\Leftrightarrow t^3-t^2-2t\ge0\Leftrightarrow t\left(t+1\right)\left(t-2\right)\ge0\)

ĐÚNG VỚI : \(t\ge2\)

ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c

\(\Rightarrow DPCM\) 

Kiệt Nguyễn
20 tháng 8 2020 lúc 21:36

Do a, b, c là các số thực dương nên abc khác 0

Bất đẳng thức cần chứng minh tương đương với \(\sqrt{\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)}\ge1+\)\(+\sqrt[3]{\left(\frac{a^2}{bc}+1\right)\left(\frac{b^2}{ca}+1\right)\left(\frac{c^2}{ab}+1\right)}\)(Chia cả 2 vế của bất đẳng thức cho abc khác 0)

Đặt \(x=\frac{a}{b};y=\frac{b}{c};z=\frac{c}{a}\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và bất đẳng thức trên trở thành \(\sqrt{\left(xy+yz+zx\right)\left(x+y+z\right)}\ge1+\sqrt[3]{\left(\frac{x}{z}+1\right)\left(\frac{y}{x}+1\right)\left(\frac{z}{y}+1\right)}\)\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz}\ge1+\sqrt[3]{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}}\)\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)+1}\ge1+\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Đặt \(t=\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)suy ra \(t\ge2\). Khi đó ta viết lại bất đẳng thức cần chứng minh thành \(\sqrt{t^3+1}\ge1+t\Leftrightarrow t^3+1\ge t^2+2t+1\Leftrightarrow t\left(t-2\right)\left(t+1\right)\ge0\)

Bất đẳng thức cuối cùng luôn đúng do \(t\ge2\)

Vậy bài toán được chứng minh 

Đẳng thức xảy ra khi a = b = c

Khách vãng lai đã xóa
Vũ Thành Khoa
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
zZz Cool Kid zZz
9 tháng 8 2019 lúc 9:38

\(=\left(a+b-c\right)\left(a-b\right)^2\) nha ! 

P/S:Ko có mục đích xấu,đăng lên cho bạn thôi.

KAl(SO4)2·12H2O
9 tháng 8 2019 lúc 9:40

Giỏi quá à :3

chuyên toán thcs ( Cool...
9 tháng 8 2019 lúc 9:43

Trả lời

Ở phần kết quả bạn vẫn chưa thu gọn hết đâu nha

\(=\left(a+b+c\right).\left(a-b\right)^2\)

Mk góp ý thôi mong mọi người đừng có đáp gạch đáp đá nha 

Study well 

Duyen Đao
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2020 lúc 12:53