các th cô ac giải giúp câu 6,7,8 với ạ!
Giúp câu 6,7,8 với ạ


Giúp mình câu 6,7,8 với ạ
Ai giúp mình câu 6,7,8 với ạ
Dạ em chào Thầy/Cô,
Thầy/Cô giải giúp em Câu 3 với ạ
Em cảm ơn nhiều ạ

1, VTCP \(\overrightarrow{AC}=\left(-2;2\right)\); A(4;3)
PTTS : \(\left\{{}\begin{matrix}x=4+2t\\y=3-2t\end{matrix}\right.\)( t là tham số )
VTPT ( -2;-2) ; A(4;3)
PTTQ : \(-2\left(x-4\right)-2\left(y-3\right)=0\Leftrightarrow-2x-2y+14=0\Leftrightarrow x+y-7=0\)
2, AB : \(VTCP\overrightarrow{AB}=\left(-10;-2\right)\)
Do delta vuông góc với AB nên VTCP AB là VTPT đt delta
delta \(-10\left(x-2\right)-2\left(y-5\right)=0\Leftrightarrow-10x-2y+30=0\Leftrightarrow5x+y-15=0\)
3, pt đường tròn có dạng \(\left(x+6\right)^2+\left(y-1\right)^2=R^2\)
do pt (C1) thuộc A nên \(\left(4+6\right)^2+\left(3-1\right)^2=R^2\Leftrightarrow104=R^2\)
=> \(\left(C1\right):\left(x+6\right)^2+\left(y-1\right)^2=104\)
4, tâm \(I\left(3;4\right)\)
\(R=\dfrac{AC}{2}=\dfrac{\sqrt{4+4}}{2}=\dfrac{\sqrt{8}}{2}\Rightarrow R^2=2\)
\(\left(C2\right):\left(x-3\right)^2+\left(y-4\right)^2=2\)
ai giúp mik câu 6,7,8 đc ko ạ

Dạ Thầy cô giải giúp em câu này với ạ
Em Cảm ơn nhiều ạ

1: vecto AC=(-2;2)
=>VTCP là (-2;2); vtpt là (2;2)
2: vecto AB=(-10;-2)=(5;1)
=>VTPT của Δ là (5;1)
vtcp của Δ là (-1;5)
\(\overrightarrow{AC}=\left(-2;2\right)=2\left(-1;1\right)\) nên đường thẳng AC nhận \(\left(-1;1\right)\) là 1 vtcp và \(\left(1;1\right)\) là 1 vtpt
b.
\(\overrightarrow{BA}=\left(10;2\right)=2\left(5;1\right)\) ; mà \(\Delta\perp AB\) nên \(\Delta\) nhận (5;1) là 1 vtpt và \(\left(1;-5\right)\) là 1 vtcp
(Xin lồi thầy cô đợt này con đang ôn khảo sát nên gửi câu hỏi hơi nhiều ạ. Kính nhờ thầy cô giải giúp con bài hình này với ạ.)
Đề bài:
Cho tam giác ABC nhọn (AB < AC) có hai đường cao BE, CF cắt nhau tại H.
a) Chứng minh: AF. AB = AE.AC.
b) Chứng minh: góc AEF = góc ABC và BE.CF + AE.AF = AB.AC
c) Đường thẳng qua B và song song với EF cắt AC tại M. Gọi I là trung điểm của BM, D là giao điểm của EI và BC. Chứng minh ba điểm A, H, D thẳng hàng.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\hat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
=>\(\frac{AE}{AF}=\frac{AB}{AC}\)
=>\(\frac{AE}{AB}=\frac{AF}{AC}\)
=>\(AE\cdot AC=AF\cdot AB\)
b: Xét ΔAEF và ΔABC có
\(\frac{AE}{AB}=\frac{AF}{AC}\)
góc EAF chung
Do đó: ΔAEF~ΔABC
=>\(\hat{AEF}=\hat{ABC}\)
c: Ta có: ΔBEM vuông tại E
mà EI là đường trung tuyến
nên IE=IB
=>ΔIBE cân tại I
=>\(\hat{IEB}=\hat{IBE}\)
mà \(\hat{FEB}=\hat{IBE}\) (hai góc so le trong, FE//BM)
nên \(\hat{FEB}=\hat{IEB}\)
=>EB là phân giác của góc FED
Gọi K là giao điểm của AH và BC
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥BC tại K
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\hat{FHB}=\hat{EHC}\) (hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
=>\(\frac{HF}{HE}=\frac{HB}{HC}\)
=>\(\frac{HF}{HB}=\frac{HE}{HC}\)
Xét ΔHFE và ΔHBC có
\(\frac{HF}{HB}=\frac{HE}{HC}\)
góc FHE=góc BHC
Do đó: ΔHFE~ΔHBC
=>\(\hat{HEF}=\hat{HCB}\)
mà \(\hat{HCB}=\hat{BAK}\left(=90^0-\hat{ABC}\right)\)
nên \(\hat{HEF}=\hat{BAK}\) (1)
Xét ΔHEA vuông tại E và ΔHKB vuông tại K có
\(\hat{EHA}=\hat{KHB}\) (hai góc đối đỉnh)
Do đó: ΔHEA~ΔHKB
=>\(\frac{HE}{HK}=\frac{HA}{HB}\)
=>\(\frac{HE}{HA}=\frac{HK}{HB}\)
Xét ΔHEK và ΔHAB có
\(\frac{HE}{HA}=\frac{HK}{HB}\)
góc EHK=góc AHB
Do đó: ΔHEK~ΔHAB
=>\(\hat{HEK}=\hat{HAB}=\hat{BAK}\left(2\right)\)
TỪ (1),(2) suy ra \(\hat{HEK}=\hat{HEF}\)
=>EB là phân giác của góc FEK
mà EB là phân giác của góc FED
và EK và ED có điểm chung là E; D và K đều nằm trên cạnh BC
nên K trùng với D
=>A,H,D thẳng hàng

Giải hộ em bài 6,7,8 với ạ
8:
a: Xét tứ giác ADCF có
E là trungd diểm chung của AC và DF
=>ADCF là hbh
=>AD//CF và AD=CF
=>CF=DB
b: Xét ΔBDC và ΔFCD có
BD=CF
DC chung
BC=DF
=>ΔBDC=ΔFCD
c: Xét ΔABC có AD/AB=AE/AC=1/2
nên DE//BC và DE=1/2BC
Dạ thầy cô giải giúp em 2 câu theo cách trong sách với ạ
Dạ em cảm ơn nhiều ạ


1: =>2x^2-7x-11=x^2-5x+4
=>x^2-2x-15=0
=>(x-5)(x+3)=0
=>x=5 hoặc x=-3
2: =>x>=1 và 25-x^2=x^2-2x+1
=>x^2-2x+1-25+x^2=0 và x>=1
=>2x^2-2x-24=0 và x>=1
=>x=4
1.
Bình phương hai vế pt đã cho ta được:
\(x^2-5x+4=2x^2-7x-11\)
\(\Rightarrow x^2-2x-15=0\)
\(\Rightarrow x=5\) hoặc \(x=-3\)
Thay lần lượt hai giá trị trên vào pt đã cho ta thấy đều thỏa mãn
Vậy nghiệm của pt là \(S=\left\{-3;5\right\}\)
2.
Bình phương 2 vế pt đã cho:
\(25-x^2=\left(x-1\right)^2\)
\(\Rightarrow25-x^2=x^2-2x-1\)
\(\Rightarrow2x^2-2x-24=0\)
\(\Rightarrow x=4\) hoặc \(x=-3\)
Lần lượt thay các giá trị trên vào pt đã cho ta thấy chỉ có \(x=4\) thỏa mãn
Vậy nghiệm của pt đã cho là \(S=\left\{4\right\}\)