2-7-(-12)=
tính \(\sqrt{7-2\sqrt{12}}\) kết quả là
a, \(7-2\sqrt[]{12}\)
b, \(2\sqrt{12}-7\)
c, 2-\(\sqrt{3}\)
d, \(\sqrt{3}-2\)
\(\sqrt{7-2\sqrt{12}}=\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
=> Chọn C
2/7+4/5-7/12+12/7+21/5-17/12
2/7+4/5-7/12+12/7+21/5-17/12
=38/35-7/12+12/7+21/5-17/12
= 211/420+12/7+21/5-17/12
=133/60+21/5-17/12
=42/12-17/12
=23/12
(2/2×7)+(2/7×12)+(2/12×17)+...+(2/47+52)
\(\frac{2}{2\times7}+\frac{2}{7\times12}+..+\frac{2}{47\times52}=\frac{2}{5}\left(\frac{1}{2}-\frac{1}{7}\right)+\frac{2}{5}\left(\frac{1}{7}-\frac{1}{12}\right)+..+\frac{2}{5}\left(\frac{1}{47}-\frac{1}{52}\right)\)
\(=\frac{2}{5}\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+..+\frac{1}{47}-\frac{1}{52}\right)=\frac{2}{5}\times\left(\frac{1}{2}-\frac{1}{52}\right)=\frac{5}{26}\)
1) Tính
a) 9/12 - 5/12 ; 9/12 - 1/3 ; 7 - 3/2 ; 9/4 - 2
b) 2/7 + 5/7 ; 1/3 + 5/12 ; 2 + 2/5 ; 6/9 + 3
c) 2/3 x 4/7 ; 3/11 x 2 ; 4 x 2/7
d) 8/21 : 4/7 ; 8/7 : 4 ; 5 : 2/3
AI LÀM NHANH VÀ ĐÚNG NHẤT THÌ MÌNH TICK CHO!!!!
a] 4/12 ; 5/12 ; 11/2 ; 1/4
b] 1 ; 9/12; 12/5 ; 11/3
c] 8/21; 6/11;8/7
d] 2/3 ;2/7 15/2
a]1/3 5/12 11/2 1/4
b]1 3/4 12/5 33/9
c]8/21 6/11 8/7
d]2/3 2/7 15/2
a) 1/3 ; 5/12 ; 11/2 ; 1/14
b) 1 ; 9/12 ; 12/5 ; 11/3
c) 8/21 ; 6/11 ; 8/7
d) 2/3 ; 2/7 ; 15/2
a) \(\dfrac{5}{7}\)+\(\dfrac{3}{4}\).\(\dfrac{-11}{2}\)
b) (\(\dfrac{12}{17}\)+\(\dfrac{19}{7}\)) - (\(\dfrac{-5}{17}\)-\(\dfrac{3}{7}\))
c) (0,125)\(^{12}\).(-8)\(^{12}\)-\(\dfrac{45^3}{15^3}\)
d) \(5\dfrac{2}{7}\).(\(-\dfrac{1}{3}\))-\(2\dfrac{2}{7}\).(\(-\dfrac{1}{3}\))
e) \(\dfrac{9^2.9^3}{3^9}\)
\(a,=\dfrac{5}{7}-\dfrac{33}{8}=-\dfrac{191}{56}\\ b,=\left(\dfrac{12}{17}+\dfrac{5}{17}\right)+\left(\dfrac{19}{7}+\dfrac{3}{7}\right)=1+3=4\\ c,=\left(0,125\cdot8\right)^{12}-\left(\dfrac{45}{15}\right)^3=1-3^3=-26\\ d,=\left(-\dfrac{1}{3}\right)\left(5\dfrac{2}{7}-2\dfrac{2}{7}\right)=-\dfrac{1}{3}\cdot3=-1\\ e,=\dfrac{3^4\cdot3^6}{3^9}=3\)
\(\dfrac{7}{12}\times\dfrac{2}{3}-\dfrac{5}{3}\times\dfrac{7}{12}+\dfrac{7}{12}\times3\)
Tính nhanh (nếu có):
1) 2/3 + -3/7 + -7/10 + 3/-8
2) 7+ ( 7/12 - 1/12 + 3) - (1/12 + 5)
3) 3/4 - 0,25 - [ 7/3 + (-9/2)] - 5/6
\(\frac{2}{7}.\frac{12}{15}+\frac{12}{15}.\frac{3}{7}+\frac{12}{15}.\frac{1}{7}+\frac{12}{15}.\frac{1}{7}\)
giải: 12/15(2/7+3/7+1/7+1/7)=12/15.7/7=12/15=4/5
\(=\frac{12}{15}.\left(\frac{2}{7}+\frac{3}{7}+\frac{1}{7}+\frac{1}{7}\right)\)
\(=\frac{12}{15}.1\)
\(=\frac{12}{15}=\frac{4}{5}\)
Câu 7: A=7+(7/12-1/2+3)- (1/12+5) cÂU 8: A=-1/4+7/33 -5/3-(-15/12+6/11-68/49)
\(7,\)
\(A=7+\left(\dfrac{7}{12}-\dfrac{1}{2}+3\right)-\left(\dfrac{1}{12}+5\right)\)
\(=7+\dfrac{7}{12}-\dfrac{1}{2}+3-\dfrac{1}{12}-5\)
\(=\left(\dfrac{7}{12}-\dfrac{1}{12}\right)+\left(7+3-5\right)-\dfrac{1}{2}\)
\(=\dfrac{6}{12}+5-\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+5\)
\(=5\)
\(8,\)
\(A=-\dfrac{1}{4}+\dfrac{7}{33}-\dfrac{5}{3}-\left(-\dfrac{15}{12}+\dfrac{6}{11}-\dfrac{68}{49}\right)\)
\(=-\dfrac{1}{4}+\dfrac{7}{33}-\dfrac{5}{3}+\dfrac{15}{12}-\dfrac{6}{11}+\dfrac{68}{49}\)
\(=\left(-\dfrac{1}{4}+\dfrac{15}{12}\right)+\left(\dfrac{7}{33}-\dfrac{5}{3}-\dfrac{6}{11}\right)+\dfrac{68}{49}\)
\(=\left(-\dfrac{3}{12}+\dfrac{15}{12}\right)+\left(\dfrac{7}{33}-\dfrac{55}{33}-\dfrac{18}{33}\right)+\dfrac{68}{49}\)
\(=\dfrac{12}{12}-\dfrac{66}{33}+\dfrac{68}{49}\)
\(=1-2+\dfrac{68}{49}\)
\(=-1+\dfrac{68}{49}\)
\(=\dfrac{19}{49}\)
Bài 1: A=2/3*7 + 2/7*11 + 2/11*15+ ... +2/99*103 Bài 2: A=7/2 + 7/6 + 7/12 + 7/20 + 7/30 + 7/42 + 7/56 + 7/72 + 7/90 Bài 3: A=505/10*1212 + 505/12*1414 + 505/14*1616 +...+ 505/96*9898 Bài 4: A=2/1*3 - 4/3*5 - 6/5*7 - ... - 20/19*21 Bài 5: A=1 - 5/6 + 7/12 - 9/20 + 11/30 - 13/42 + 15/56 - 17/72 + 19/90 :>
\(1,A=\dfrac{2}{3\cdot7}+\dfrac{2}{7\cdot11}+\dfrac{2}{11\cdot15}+...+\dfrac{2}{99\cdot103}\\ 2A=\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{99\cdot103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{99}-\dfrac{1}{103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{103}=\dfrac{100}{309}\\ A=\dfrac{100}{309}\cdot\dfrac{1}{2}=\dfrac{50}{309}\)
\(2,A=\dfrac{7}{2}+\dfrac{7}{6}+\dfrac{7}{12}+\dfrac{7}{20}+\dfrac{7}{30}+\dfrac{7}{42}+\dfrac{7}{56}+\dfrac{7}{72}+\dfrac{7}{90}\\ A=7\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\right)\\ A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ A=7\left(1-\dfrac{1}{10}\right)=7\cdot\dfrac{9}{10}=\dfrac{63}{10}\)
Bài 1:
Ta có: \(A=\dfrac{2}{3\cdot7}+\dfrac{2}{7\cdot11}+\dfrac{2}{11\cdot15}+...+\dfrac{2}{99\cdot103}\)
\(=\dfrac{1}{2}\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{99\cdot103}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{100}{309}=\dfrac{50}{309}\)
Bài 2:
Ta có: \(A=\dfrac{7}{2}+\dfrac{7}{6}+\dfrac{7}{12}+\dfrac{7}{20}+\dfrac{7}{30}+\dfrac{7}{42}+\dfrac{7}{56}+\dfrac{7}{72}+\dfrac{7}{90}\)
\(=7\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\)
\(=7\left(1-\dfrac{1}{10}\right)\)
\(=\dfrac{63}{10}\)