Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Cong Anh Nguyen
Xem chi tiết
Moon
Xem chi tiết
Akai Haruma
5 tháng 11 2023 lúc 18:56

Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$

$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)

Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$

----------------------

Áp dụng BĐT Bunhiacopkxy:

$A^2\leq (x+4+6-x)(1+1)=10.2=20$

$\Rightarrow A\leq \sqrt{20}$

Vậy $A_{\max}=\sqrt{20}$

Nguyễn Nhật Lâm
Xem chi tiết
Mạnh Đoàn
Xem chi tiết
Trần Tuấn Hoàng
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2022 lúc 22:33

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

ĐẶNG QUỐC SƠN
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
Trần Cao Vỹ Lượng
Xem chi tiết
Phạm Thị Thùy Linh
14 tháng 6 2019 lúc 9:01

\(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\)

\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)

\(\Rightarrow x-10=0\)

\(\Rightarrow x=10\)

T.Ps
14 tháng 6 2019 lúc 9:06

#)Giải :

\(A=x^2-20x+101\)

\(A=x^2+2.10.x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = -10

=> Vậy GTNN của A = 1 đạt được khi x = -10

Phạm Thị Thùy Linh
14 tháng 6 2019 lúc 9:09

\(a,\)\(4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-2.x.2+2^2-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\)

\(\Rightarrow A_{min}=7\Leftrightarrow\left(x-2\right)^2=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

Lưu Đức Mạnh
Xem chi tiết
Thắng Nguyễn
5 tháng 6 2017 lúc 13:30

*)Tìm GTNN: Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(A=\sqrt{x-1}+\sqrt{4-x}\)

\(\ge\sqrt{x-1+4-x}=\sqrt{3}\)

*)Tìm GTLN: Áp dụng BĐT AM-GM ta có:

\(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)^2\)

\(=\left(x-1\right)+\left(4-x\right)+2\sqrt{\left(x-1\right)\left(4-x\right)}\)

\(=3+2\sqrt{\left(x-1\right)\left(4-x\right)}\)

\(\le3+\left(x-1\right)\left(4-x\right)=3+3=6\)

\(\Rightarrow A^2\le6\Rightarrow A\le\sqrt{6}\)

Nguyễn Tấn Chí
2 tháng 7 2019 lúc 7:36

cho hỏi bất đảng thức AM-GM là j v

\(\Rightarrow A^2\le6\Rightarrow A\le\sqrt{6}\)