Ta có : \(\left|A\right|=\left|x\right|.\left(99+\sqrt{101-x^2}\right)=\left|x\right|.\left(\sqrt{99}.\sqrt{99}+1.\sqrt{101-x^2}\right)\)
Áp dụng BĐT Bunhiacopxki và Cauchy liên tiếp , ta có \(\left|A\right|=\left|x\right|.\left(\sqrt{99}.\sqrt{99}+1.\sqrt{101-x^2}\right)\le\left|x\right|.\sqrt{\left(99+1\right).\left(99+101-x^2\right)}\)
\(\Leftrightarrow\left|A\right|\le10.\sqrt{x^2.\left(200-x^2\right)}\le10.\frac{200-x^2+x^2}{2}=1000\)
\(\Rightarrow\left|A\right|\le1000\Leftrightarrow-1000\le A\le1000\)
min A = -1000 tại x = -10
max A = 1000 tại x = 10