Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hang nguyen thi thu
Xem chi tiết
Htt7a
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 20:43

a: BC=10cm

C=AB+BC+AC=6+8+10=24(cm)

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

☆Châuuu~~~(๑╹ω╹๑ )☆
5 tháng 2 2022 lúc 20:48

undefined

Phuc Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 14:47

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

Ngọc Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 9 2023 lúc 14:53

ΔABC vuông tại A

=>BC^2=AB^2+AC^2

=>BC^2=6^2+8^2=100

=>BC=10(cm)

Xét ΔBAC có BD là phân giác

nên DA/AB=DC/BC

=>DA/3=DC/5

=>\(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=1\)

=>DC=5(cm)

Kiều Vũ Linh
6 tháng 9 2023 lúc 15:00

\(\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\) (Pytago)

\(=6^2+8^2\)

\(=100\)

\(\Rightarrow BC=10\left(cm\right)\)

Do BD là tia phân giác của \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AB}{AD}=\dfrac{BC}{DC}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{AB}{AD}=\dfrac{BC}{DC}=\dfrac{AB+BC}{AD+DC}=\dfrac{6+10}{8}=2\)

\(\dfrac{BC}{DC}=2\Rightarrow DC=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Nguyễn Đức Trí
6 tháng 9 2023 lúc 15:11

\(BC^2=AB^2+AC^2=36+64=100\left(Pitago\right)\)

\(\Rightarrow BC=10\left(cm\right)\)

Áp dụng tính chất phân giác của tam giác ABC :

\(\dfrac{AB}{BC}=\dfrac{AD}{CD}\)

\(\Rightarrow\dfrac{AB}{AD}=\dfrac{BC}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{BC}=\dfrac{6+10}{10}=\dfrac{16}{10}=\dfrac{8}{5}\)

\(\Rightarrow CD=\dfrac{5}{8}.BC=\dfrac{5}{8}.10=\dfrac{25}{4}\left(cm\right)=6,25\left(cm\right)\)

lê thành nhân
Xem chi tiết
123 nhan
Xem chi tiết
HT.Phong (9A5)
14 tháng 9 2023 lúc 12:05

Bài 3:

Ta có:

\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)

\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)  

Mà: \(sinN=\dfrac{MN}{NP}\)

\(\Rightarrow sin37^o=\dfrac{MN}{25}\)

\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)

Áp dung định lý Py-ta-go ta có:

\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)

Nguyễn Lê Phước Thịnh
14 tháng 9 2023 lúc 12:26

3:

a: Xét ΔABC có AC^2=BA^2+BC^2

nên ΔBAC vuông tại B

b: Xét ΔBAC vuông tại B có

sin A=BC/AC=42/58=21/29

cos A=AB/AC=40/58=20/29

tan A=BC/BA=21/20

cot A=BA/BC=20/21

c: Xét ΔABC vuông tại B có BH là đường cao

nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA

=>BH*58=40*42=1680

=>BH=840/29(cm)

BA^2=AH*AC

=>AH=BA^2/AC=40^2/58=800/29cm

CB^2=CH*CA

=>CH=CB^2/CA=42^2/58=882/29(cm)

ΔBHA vuông tại H có HE là đường cao

nênBE*BA=BH^2

=>BE*40=(840/29)^2

=>BE=17640/841(cm)

ΔBHC vuông tại H có HF là đường cao

nênBF*BC=BH^2

=>BF*42=(840/29)^2

=>BF=16800/841(cm)

Xét tứ giác BEHF có

góc BEH=góc BFH=góc EBF=90 độ

=>BEHF là hình chữ nhật

=>góc BFE=góc BHE(=1/2*sđ cung BE)

=>góc BFE=góc BAC

Xét ΔBFE và ΔBAC có

góc BFE=góc BAC

góc FBE chung

Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2

=>S AECF=S ABC*(1-(420/841)^2)

=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)

‌‌‌‌‌‌‌
14 tháng 9 2023 lúc 14:49

Đã đăng lên cộng đồng thì phải nhờ đến tất cả chứ bạn, nếu nhờ riêng ai đó thì mời ib?

Đăng như vậy có ngày không ai giúp bạn đâu.

Quỳnh Trâm
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 8:47

\(BC=\sqrt{AB^2+AC^2}=2\sqrt{89}\left(cm\right)\left(pytago\right)\\ \sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{16}{2\sqrt{89}}=\dfrac{8\sqrt{89}}{89}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{10}{2\sqrt{89}}=\dfrac{5\sqrt{89}}{89}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{16}{10}=1,6\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{10}{16}=0,625\)

Lấp La Lấp Lánh
2 tháng 10 2021 lúc 8:50

Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{10^2+16^2}=2\sqrt{89}\left(cm\right)\)

Áp dụng tslg trong tam giác ABC vuông tại A:

\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}=\dfrac{16}{2\sqrt{89}}=\dfrac{8\sqrt{89}}{89}\\cosB=\dfrac{AB}{BC}=\dfrac{10}{2\sqrt{89}}=\dfrac{5\sqrt{89}}{89}\\tanB=\dfrac{AC}{AB}=\dfrac{16}{10}=\dfrac{8}{5}\\cotB=\dfrac{AB}{AC}=\dfrac{10}{16}=\dfrac{5}{8}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{10}{2\sqrt{89}}=\dfrac{5\sqrt{89}}{89}\\cosC=\dfrac{AC}{BC}=\dfrac{16}{2\sqrt{89}}=\dfrac{8\sqrt{89}}{89}\\tanC=\dfrac{AB}{AC}=\dfrac{10}{16}=\dfrac{5}{8}\\cotC=\dfrac{AC}{AB}=\dfrac{16}{10}=\dfrac{8}{5}\end{matrix}\right.\)

Tuyết Như
Xem chi tiết
Hưng Nguyễn
8 tháng 5 2022 lúc 12:37

bài toán vô lí quá nếu mà cân tại A thì AB = AC chứ đáng lẽ ra là vuông tại A chứ:

 

Hưng Nguyễn
8 tháng 5 2022 lúc 13:10

nếu là vuông tại A thì có:

a.Xét tam giác ABC vuông tại A:

BC2=AB2+AC2(định lí pytago)

hay   BC2=62+82

        BC2=36+64

        BC2= \(\sqrt{100}\)

        BC=10(cm)

vậy BC=10cm

Xét ΔABC và ΔACM có:

AB=AM(gt)

AC chung

^CAB=^CAM=90o

=>ΔABC=ΔACM(trường hợp gì tự biết)   :)

 

Tuyết Như
Xem chi tiết
Tuyết Như
8 tháng 5 2022 lúc 11:42

Giúp với tớ cần gấp

 

Tử Nguyệt
Xem chi tiết