Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jig wake saw_Khánh Ly
Xem chi tiết
Lê Vũ Ngọc Phúc
Xem chi tiết
Akai Haruma
14 tháng 12 2023 lúc 11:40

Lời giải:

$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$

$=(x+y)^2+x^2+y^2-6x-6y+11$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$

$\Leftrightarrow x=y=1$

Phạm Bảo Ngọc
Xem chi tiết
Trà My
9 tháng 7 2017 lúc 22:14

\(Q=x^2+2y^2+2xy-2x-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)

\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)

\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra khi x=-3;y=4

Nguyễn Đình Toàn
30 tháng 10 2017 lúc 17:07

2015 nha bạn.

Nguyễn Hoàng Bảo Nhi
20 tháng 4 2020 lúc 9:55

\(Q=x^2+2y^2+2xy-2x-6y+2015\)

\(Q=\left(x^2+y^2+1+2xy-2x-2y\right)+\left(y^2-4y+4\right)+2010\)

\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)

Dâu'=' xảy ra khi và chỉ khi 

\(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Vậy giá trị nhỏ nhất của Q bằng 2010, xảy ra khi x=-1,y=2

Khách vãng lai đã xóa
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 8 2021 lúc 15:40

\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)

\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)

Big City Boy
Xem chi tiết
Thu Thao
25 tháng 12 2020 lúc 19:50

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

Nguyễn Huy Bình
Xem chi tiết
Trần Ngọc Nam
24 tháng 12 2019 lúc 18:59

biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?

Khách vãng lai đã xóa
Hoàng Ninh
Xem chi tiết
Tran Le Khanh Linh
9 tháng 3 2020 lúc 15:47

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
9 tháng 3 2020 lúc 15:55

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

Khách vãng lai đã xóa
Nguyễn Chí Cường
Xem chi tiết
Ngô Thị Nhật Hiền
7 tháng 4 2015 lúc 22:12

\(A=x^2+2xy+2y^2+2x-4y+2013\)

\(=\left(x^2+y^2+1+2x+2y+2xy\right)-1-2y+y^2-4y+2013\)\(=\left(x+y+1\right)^2+\left(y^2-2.y.3+9\right)-9+2012\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\)

mà \(\left(x+y+1\right)^2,\left(y-3\right)^2\ge0\)

\(\Rightarrow A=x^2+2xy+2y^2+2x-4y+2013=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\ge2003\)

\(\Rightarrow Min\left(A\right)=2003\)

Nguyen Hai Dang
17 tháng 10 2016 lúc 20:02

còn thiếu: khi y=3 và x= -y-1

le diep
Xem chi tiết
Phan Văn Hiếu
28 tháng 12 2016 lúc 10:09

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

Ngân
27 tháng 12 2016 lúc 18:34

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam