cho a/c=c/b. CMR:
a, a^2+c^2/b^2+c^2=a/b
b,b^2-a^2/a^2+c^2=b-a/a
a,cho (a+b+c)^2 =3(ab+ac+bc)
cmr:a=b=c
b,Cho(a-b)^2+(b-c)^2+(c-a)^2 +4(ab+bc+ca)=4(a^2+b^2+c^2)
cmr:a=b=c
a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\)
\(a^2+b^2+c^2-ab-ac-bc=0\)
\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
cho (a-b)^2 + (b-c)^2 + (c-a)^2=4*(a^2+b^2+c^2-a*b-a*c-b*c) cmr:a=b=c
(a-b)2+(b-c)2+(c-a)2=4(a2+b2+c2-ab-ac-bc)
<=>a2-2ab+b2+b2-2bc+c2+c2-2ac+a2=4a2+4b2+4c2-4ab-4ac-4bc
<=>2a2+2b2+2c2-2ab-2bc-2ac-4a2-4b2-4c2+4ab+4ac+4bc=0
<=>2ab+2ac+2bc-2a2-2b2-2c2=0
<=>-[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]=0
<=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)=0
<=>(a-b)2+(b-c)2+(c-a)2=0
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2}+\left(a-c\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)
<=>a-b=b-c=a-c
<=>a=b=c(đpcm)
Cho `a,b,c,d>=0.CMR:a/(b^2+c^2+d^2)+b/(c^2+d^2+a^2)+c/(d^2+a^2+b^2)+d/(a^2+b^2+c^2)>=4/(a+b+c+d)`.
cho a,b,c khác 0 và a^2=b.c
CMR:a^2+c^2/b^2+d^2=c/b
CMR: nếu a/b=c/d thì a^2+b^2=b^2+d^2=a/d
cho a,b,c>0.CMR:a^3/b+b^3/c+c^3/a>=a^2+b^2+c^2
+) Cho a,b,c>0 tm: abc=1
\(CMR:a^3+b^3+c^3+\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}\ge\dfrac{9}{2}\)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)
\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)
\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)
\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho 3 số a, b, c thỏa mãn a khác b khác c và c^2=2 (ac+bc-ab)
Cmr:a^2+(a-c)^2/b^2+(b-c)^2=a-c/b-c.
Cần gấp bạn ơi. Ai đung +1like!
Cho a,b,c thoả b≠c,a+b≠0 và c2=2(ac+bc-ab)
CMR:a2+(a-c)2/b2+(b-c)2=a-c/b-c
Cho a,b,c \(\ge1.CMR:a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)+2\left(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{1+c^2}\right)\ge9\)
Chính bài của em:
Cho `a,b,c>0`.
`CMR:a/sqrt{a^2+8bc}+b/sqrt{b^2+8ac}+c/sqrt{c^2+8ab}>=1`
Áp dụng bất đẳng thức Holder ta có:
\(\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\right)\ge\left(a+b+c\right)^3\).
Do đó ta chỉ cần chứng minh \(\left(a+b+c\right)^3\ge a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge24abc\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\). Đây là một bđt rất quen thuộc
Không Holder thì Svacxo nha :v
Áp dụng BĐT Svacxo ta có :
\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}}\)
Ta có sẽ đi chứng minh :
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)
Thật vậy theo Bunhiacopxki có :
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)
\(\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)
Ta lại đi chứng minh :
\(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\)
\(\Leftrightarrow24abc\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) ( Đây là BĐT đúng )
Do đó nhân vào ta có đpcm.