cho ac=b^2;ab=c^2;a+b+c≠0;a≠0;b≠0;c≠0: Tính b^3333/a^111*c^222
em cần gấp
Bài 1: Tìm các số tự nhiên a, b, c nhỏ nhất sao cho \(\frac{a}{b}\)= \(\frac{3}{5}\), \(\frac{b}{c}\)= \(\frac{12}{21}\), \(\frac{c}{a}\)= \(\frac{6}{11}\)
Bài 2: Cho a, b, c, d khác 0 thỏa mãn b2 = ac, c2 = bd. Chứng minh: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\frac{a}{d}\)
Bài 3: Cho a, b, c khác 0 thỏa mãn \(\frac{ab}{a+b}\) = \(\frac{bc}{b+c}\) = \(\frac{ca}{c+a}\). Tính giá trị biểu thức M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho a/b=c/d a/b,c/d khác cộng trừ 1( a,b,c,d khác 0) CMR ab/cd a^2+b^2/c^2+d^2 (Giải bàng nhiều cách)
1. Cho a/a'=b\b'=c/c'
Tính tỉ số a+b+c/a'+b'+c'
Biết a'+b'c' khác 0
2. Cho a/a'=b/b'=c/c'=-4
Tính: -a+3b-2c/a'-3b'+2c'
3. Cho a/b=c/d
Chứng minh:
ac/bd=a^2+c^2/b^2+d^2
cho 3 số a,b,c dương thỏa mãn :
ab/a+b = bc/b+c =ca/c+a
Tìm giá trị của biểu thức :
M= 7ab+11bc-15ac/a^2+b^2+c^2
cho dãy tỉ số ab+bc/a+b=bc+ca/b+c=ca+ab/c+a cmr a=b=c chỗ ab,bc,ca là số có 2 chữ số nhé ko phải nhân đâu
C/m rằng với a,b,c là các số thực ≠ 0 thì\(\dfrac{ab+ac}{4}=\dfrac{bc+ab}{6}=\dfrac{ca+cb}{8}\) thì \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)
Câu 1: Cho \(\dfrac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\dfrac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\). Chứng minh: \(\dfrac{a}{b}=+-\dfrac{c}{d}\)
Câu 2: Cho dãy tỉ số bằng nhau: \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\). Tính giá trị biểu thức: M = \(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Câu 3: Tìm x, y ϵ N biết: \(25-y^2=8\left(x-2009\right)^2\)
Câu 4: Tìm x biết: \(\left|x^2+\left|6x-2\right|\right|=x^2+4\)
Câu 5: Tìm các số nguyên thoả mãn: \(x-y+2xy=7\)
Câu 6: Cho \(a>2,b>2\). Chứng minh: \(ab>a+b\)
Bài 1: Cho a, b , c khác 0 , 2a + 2b-c khác 0, 2b+2c-a khác 0, 2c+2a-b khác 0 thoả mãn:
(2y+2z-a)/a=(2z+2x-y)/b=(2x+2y-z)/c
GIÚP MK VS Ạ