Cho 2y + 2z - x/ a = 2z + 2x - y/ b = 2x + 2y - z/c với a,b,c khác 0; 2c +2b khác c; 2b + 2c khác a; 2c +2b khác b. Chứng minh : x/ 2b + 2c - a= y/ 2c + 2a - b= z/ 2a + 2b - c
cho tỉ lệ thức\(\dfrac{a}{b}=\dfrac{c}{d}\)
(a,b,c,d khác 0)
chứng tỏ rằng
bài 1 \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
bài 2 \(\dfrac{2a+c}{3a-c}=\dfrac{2b+d}{3b-d}\)
bài 3\(\dfrac{5a-2c}{3a-4c}=\dfrac{5b-2d}{3b-4d}\)
nhanh nha gấp lắm ạ
Cho \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)
C/m rằng: \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\) với các mẫu số ≠ 0
cho a/x=b/y=c/z va x+y+z khac 0;x-3y+2z khac 0.tinh gia tri cua cac bieu thuc :a,M=a+b+c/x+y+z
N=a-3b+2c/x-3y+2z
Cho a, b, c khác 0 thỏa mãn \(\dfrac{2a+b+c}{a}=\dfrac{a+2b+c}{b}=\dfrac{a+b+2c}{c}\)
Tính \(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)^c}{abc}\)
Cho:\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\)(a,b,c,d > 0)tính giá trị của biểu thức P=\(\dfrac{2018a-2017b}{c+d}+\dfrac{2018b-2017}{a+d}+\dfrac{2018c-2017a}{b+c}+\dfrac{2018d-2017a}{b+c}\)
Câu 1: Cho các số \(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)
Câu 2: Tìm x và y biết: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\)
Câu 3: Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính M = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
Câu 4: Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\). Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)
Câu 5: Cho 4 số a, b, c, d đều ≠ 0 thoả mãn \(b^2=ac\), \(c^2=bd\), \(b^3+27c^3+8d^3\) ≠ 0. Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\)
Câu 6: Cho \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức A = \(2016x+y^{2017}+x^{2017}\)
Câu 7: Tìm giá trị nhỏ nhất của biểu thức A biết: \(A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+zy+zx-2000\right|\)
Câu 8: Tìm 3 số a, b, c biết: \(\dfrac{3a-2b}{4}=\dfrac{2c-4a}{3}=\dfrac{4b-3c}{2}\) và \(a+b+c=18\).
1.TÌm x,y,z biết
a.2009-\(\left|x-2009\right|\)=x
b.\(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+u-z\right|\)=0
2.Tìm các số a,b,c biết
\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)
và a+b+c = -50
Cho a, b, c \(\ne\) 0 thỏa mãn \(\frac{2a+b}{b}=\frac{2b+c}{c}=\frac{2a+a}{a}\)
Tính A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)