Cho các số a b c , , thỏa mãn abc 0 và 1 1 1 1 3 a b b c c a a b c c a b . Tính giá trị của biểu thức S a b c 2011.
Bài 1: Tìm các số tự nhiên a, b, c nhỏ nhất sao cho \(\frac{a}{b}\)= \(\frac{3}{5}\), \(\frac{b}{c}\)= \(\frac{12}{21}\), \(\frac{c}{a}\)= \(\frac{6}{11}\)
Bài 2: Cho a, b, c, d khác 0 thỏa mãn b2 = ac, c2 = bd. Chứng minh: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\frac{a}{d}\)
Bài 3: Cho a, b, c khác 0 thỏa mãn \(\frac{ab}{a+b}\) = \(\frac{bc}{b+c}\) = \(\frac{ca}{c+a}\). Tính giá trị biểu thức M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
cho a, b, c là 3 số dương thỏa mãn
a/671 x b +c = b/671 x c + a = c/671 x a +b
tính giá trị biểu thức
A= 671 x b +c
1. Tìm tất cả các số thực x thỏa mãn
\(\left|x+\frac{1}{10}\right|+\left|x+\frac{2}{10}\right|+...+\left|x+\frac{9}{10}\right|=10x\)
2. Chứng minh rằng :
a) \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^n}< \frac{1}{3}\) với mọi số nguyên dương n
b)\(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^n}< \frac{4}{9}\) với mọi số nguyên dương n
3. Cho các số thực x,y,z thỏa mãn x+y+z = \(\frac{x}{y+z+3}=\frac{y}{z+x+2}+\frac{z}{z+y-5}\)
4. Cho các số thực dương a,b,c thỏa mãn điều kiện \(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}\) . Chứng minh rằng a=b=c
5. Cho các số thực a,b,c thỏa mãn \(\frac{a}{b+c-a}=\frac{b}{c+a-b}=\frac{c}{a+b-c}\) (giả sử các mẫu số đều khác 0). Tính giá trị biểu thức
P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
1. Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) . Tính giá trị của biểu thức P=\(\frac{y+z-x}{x-y+z}\)
2.Cho dãy tỉ số bằng nhau\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{b+c+a}\). Tính giá trị của biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
3.Cho a, b, c đôi một khác nhau và thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\).Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
CÁC BẠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP !!!!!!!!!!!!!!!!! HELP ME !!!!!!!!!!!
Cho 3 số a, b, c có tổng khác 0 và thỏa mãn \(\dfrac{3}{a+b}\) = \(\dfrac{2}{b+c}\) = \(\dfrac{1}{c+a}\) . Tính giá trị biểu thức: A= \(\dfrac{a+b+3c}{a+b-2c}\) ( Giả thiết các tỉ số đều có nghĩa)
cho dãy tỉ số ab+bc/a+b=bc+ca/b+c=ca+ab/c+a cmr a=b=c chỗ ab,bc,ca là số có 2 chữ số nhé ko phải nhân đâu
Câu 1:
Tìm giá trị nhỏ nhất của biểu thức sau: P= 3 |x-3 | + |2y^2 + 1| - 2010
Câu 2:
Cho b= a+c/2 và 2/c= 1/b + 1/d (với a,b,c,d nguyên dương). Cmr: a/c = b/d
Câu 3:
Tìm x,y,z biết: 2x/ 3y +4z + 1= 3y/ 2x+4z+1 = 4z/2x+3y-2 = 2x+3y+4z
cho a/2 =b/3= c/4 tính giá trị biểu thức M=3a+2b-4c/8a-5b+2c