\(2\dfrac{3}{4}+2\dfrac{4}{4}-0\)
a)\(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\) b)\(\left(0,\left(3\right)+\dfrac{\text{|}-2\text{|}}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
a: \(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\)
\(=\left(\dfrac{5}{9}-\dfrac{3}{12}\right)\cdot\dfrac{4}{3}+\dfrac{11}{3}\cdot\dfrac{4}{3}\)
\(=\left(\dfrac{5}{9}-\dfrac{1}{4}+\dfrac{11}{3}\right)\cdot\dfrac{4}{3}\)
\(=\dfrac{20-9+132}{36}\cdot\dfrac{4}{3}\)
\(=\dfrac{143}{3}\cdot\dfrac{1}{9}=\dfrac{143}{27}\)
b: \(\left(0.\left(3\right)+\dfrac{\left|-2\right|}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\cdot\dfrac{4}{5}-1\)
\(=\dfrac{4}{5}-1=-\dfrac{1}{5}\)
Bài 4: Tính
a) 0,(3) + \(\dfrac{10}{3}\) + 0,4(2) b) \(\dfrac{4}{9}\) + 1,2(31) - 0,(13)
c) 2,(4) x \(\dfrac{3}{11}\) d) -0,(3) + \(\dfrac{1}{3}\)
a: Ta có: \(0,\left(3\right)+\dfrac{10}{3}+0,4\left(2\right)\)
\(=\dfrac{1}{3}+\dfrac{10}{3}+\dfrac{4}{9}\)
\(=\dfrac{33}{9}+\dfrac{4}{9}=\dfrac{37}{9}\)
b: Ta có: \(\dfrac{4}{9}+1.2\left(31\right)-0,\left(13\right)\)
\(=\dfrac{4}{9}+\dfrac{1219}{990}-\dfrac{13}{99}\)
\(=\dfrac{440}{990}+\dfrac{1219}{990}-\dfrac{130}{990}\)
\(=\dfrac{139}{90}\)
c: Ta có: \(2,\left(4\right)\cdot\dfrac{3}{11}\)
\(=\dfrac{22}{9}\cdot\dfrac{3}{11}\)
\(=\dfrac{2}{3}\)
d: Ta có: \(-0,\left(3\right)+\dfrac{1}{3}\)
\(=-\dfrac{1}{3}+\dfrac{1}{3}\)
=0
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
a, 1\(\dfrac{5}{18}\)+\(\dfrac{7}{25}\)-\(\dfrac{5}{18}\)+\(\dfrac{18}{25}\)-0, 75
b, \(\dfrac{2}{5}\).\(\dfrac{1}{3}\)-\(\dfrac{4}{3}\).\(\dfrac{2}{5}\)
c, (\(\dfrac{-1}{4}\)).( 6\(\dfrac{2}{11}\)) + 3 \(\dfrac{9}{11}\).(\(\dfrac{-1}{4}\))
d, 4. (-\(\dfrac{1}{2}\))\(^{3_{ }}\)-\(_{ }\)2. (\(\dfrac{-1}{2}\))\(^2\) + 3. (\(\dfrac{-1}{2}\)) + 1
e, \(\dfrac{1}{6}\)-(\(\dfrac{2}{3}\))\(^2\) + \(\dfrac{5}{18}\)
f, (\(\dfrac{4}{3}\)-\(\dfrac{3}{2}\))\(^2\)- 2.|-\(\dfrac{1}{9}\)| + (-\(\dfrac{5}{18}\))
e: \(=\dfrac{1}{6}-\dfrac{4}{9}+\dfrac{5}{18}=\dfrac{3-8+5}{18}=0\)
a) \(x\left(x+4\right)-4x+1=0\)
b) \(2\left(x-3\right)+4=2x+2\)
c) \(\dfrac{x+3}{2}-\dfrac{2x+1}{4}=\dfrac{1}{4}\)
d) \(\dfrac{x^2+3x}{x+3}+3=0\)
e) \(x^2-3x\left(x-1\right)-3x-2=0\)
a: =>x^2+4x-4x+1=0
=>x^2+1=0
=>Loại
b: =>2x-6+4=2x+2
=>-2=2(loại)
c: =>2(x+3)-2x-1=1
=>6-1=1
=>5=1(loại)
d =>x+3=0
=>x=-3(loại)
e: =>x^2-3x^2+3x-3x-2=0
=>-2x^2-2=0
=>x^2+1=0
=>Loại
\(\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(\dfrac{-1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(\dfrac{-1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(-\dfrac{1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-\dfrac{1}{3}+1}}{\dfrac{1}{4}+\dfrac{5}{4}-\dfrac{13}{10}}-\dfrac{\dfrac{1}{4}-\dfrac{2}{3}+\dfrac{2}{5}}{\dfrac{3}{5}-\dfrac{2}{3}\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{35}{12}}}{\dfrac{1}{5}}-\dfrac{-\dfrac{1}{60}}{\dfrac{11}{10}}\)
\(A=\dfrac{5\sqrt{105}}{6}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}}{66}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}+11}{66}\)
a, (\(\dfrac{1}{2}x-\dfrac{1}{3}\))2 - \(\dfrac{4}{25}=0\) b , (\(1-\dfrac{1}{4}x\) )-\(\dfrac{121}{49}=0\)
a) \(\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{3}\right)^2=\dfrac{4}{25}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{22}{15}\\x=-\dfrac{2}{15}\end{matrix}\right.\)
b) \(\Rightarrow\left(1-\dfrac{1}{4}x\right)^2=\dfrac{121}{49}\)
\(\Rightarrow\left[{}\begin{matrix}1-\dfrac{1}{4}x=\dfrac{11}{7}\\1-\dfrac{1}{4}x=-\dfrac{11}{7}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{16}{7}\\x=\dfrac{72}{7}\end{matrix}\right.\)
Tính:
a) (-0,4)2 - (-0,4)3 . (-3)
b) \(\left(1\dfrac{3}{4}\right)^3\) - \(\left(1\dfrac{3}{4}\right)^2\) + (-1,031)0
c) \(\left(\dfrac{2}{3}\right)^3\) - 4. \(\left(-1\dfrac{3}{4}\right)^2\) + \(\left(-\dfrac{2}{3}\right)^3\)
Lời giải:
a. $=0,16-(-0,064).(-3)=0,16-0,192=-0,032$
b. $=(1\frac{3}{4})^2(1\frac{3}{4}-1)+1=(1\frac{3}{4})^2.\frac{3}{4}+1$
$=\frac{147}{64}+1=\frac{211}{64}$
c.
$=(\frac{2}{3})^3-4(\frac{-7}{4})^2-(\frac{2}{3})^3$
$=-4(\frac{-7}{4})^2=\frac{-49}{4}$
Tính:
a) (-0,4)2 - (0,4)3 . (-3)
b) \(\left(1\dfrac{3}{4}\right)^3\) - \(\left(1\dfrac{3}{4}\right)^2\) + (-1,031)0
c) \(\left(\dfrac{2}{3}\right)^3\) - 4. \(\left(-1\dfrac{3}{4}\right)^2\) + \(\left(-\dfrac{2}{3}\right)^3\)
a) = 0,16 - 0,064 . (-3)
= 0,16 + 0,192
= 0,352
b) = (7/4)³ - (7/4)² + 1
= 343/64 - 49/16 + 1
= 147/64 + 1
= 211/64
c) = 8/27 - 4.(-7/4)² - 8/27
= -4.49/16
= -49/4
a, \(\dfrac{x+2}{2x-4}-\dfrac{4x}{x^2-4}=0\)
b, \(\dfrac{x}{x-1}-\dfrac{5x-3}{x^2-1}=0\)
a, đk : x khác -2 ; 2
\(\left(x+2\right)^2-8x=0\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)(ktm)
pt vô nghiệm
b, đk : x khác -1 ; 1
\(x\left(x+1\right)-5x+3=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow x=1\left(ktm\right);x=3\left(tm\right)\)