Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Anh Tuấn
Xem chi tiết

a: \(x^2-8x+5\)

\(=x^2-8x+16-11\)

\(=\left(x-4\right)^2-11\ge-11\forall x\)

Dấu '=' xảy ra khi x-4=0

=>x=4

b: \(a^3+b^3+c^3=3bac\)

=>\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

=>\(\left(a+b+c\right)\left\lbrack\left(a+b\right)^2-c\left(a+b\right)+c^2\right\rbrack-3ab\left(a+b+c\right)=0\)

=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

=>\(a^2+b^2+c^2-ab-ac-bc=0\)

=>\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)

\(=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3}{3^2}=\frac13\)

Nguyễn Tùng Anh
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 2022 lúc 22:15

\(a^3+b^3+c^3-3abc=1\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\) (1)

Do \(a^2+b^2+c^2-ab-bc-ca>0\Rightarrow a+b+c>0\)

(1)\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca+\dfrac{1}{a+b+c}\)

\(\Leftrightarrow3a^2+3b^2+3c^2=\left(a+b+c\right)^2+\dfrac{1}{a+b+c}\ge3\)

\(\Rightarrow a^2+b^2+c^2\ge1\)

tấn phát
Xem chi tiết
tấn phát
Xem chi tiết
Alexandra Alice
Xem chi tiết
Diệp Tử Tinh
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2021 lúc 15:50

\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)

\(A_{min}=2020\) khi \(a=b=c=1\)

Trần Thị Thanh Thảo
Xem chi tiết
Nguyễn Anh Quân
24 tháng 11 2017 lúc 20:35

1.1

a, GTNN của A = 10 <=> x=-3

b, GTNN của B = -7 <=> x = -1

1.2

a,GTLN của C = -3 <=> x = 2

b, GTLN của D = 15 <=> x = 4

k mk nha

Phan Việt Hưng
Xem chi tiết
Chipu khánh phương
28 tháng 6 2016 lúc 11:01

Ta có :
A = a3 +b3 + c3+a2(b+c)+b2(c+a)+c2(a+b)
    = a2(a+b+c) + b2(a+b+c)+c2(a+b+c)
    = (a+b+c)(a2+b2+c2)
V ới a+b+c = 1 thì A = a2+b2+c2
Ta  có a2+b2 ≥2ab
    a2+ c2 ≥ 2ac
    b2 + c2 ≥ 2bc
2(a2 + b2 +c2) ≥ 2(ab + bc + ac)(1)
Cộng thêm vào hai vế của (1) với a2 + b2 + c2
⇔ 3(a2 + b2 + c2) ≥ (a+b+c)2
⇔ 3A ≥ 1/3
⇔ A≥1/3 Dấu “ = ” xảy ra khi a= b =c
Mà a+b+c = 1 nên a =b=c = 1/3
 Do đó A đạt giá trị nhỏ nhất là 1/3khi a =b=c = 1/3

 

Big City Boy
Xem chi tiết
Khôi Bùi
31 tháng 3 2022 lúc 18:47

\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)

\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\)   \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)

" = " \(\Leftrightarrow a=b=c=1\)

 

Hoàng Đình Bảo
31 tháng 3 2022 lúc 22:59

Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$

Ta chứng minh bất đẳng thức phụ sau: 

Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$

Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$

Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)

Do đó bất đẳng thức được chứng minh 

Dấu $"="$ xảy ra khi $x=1$

Trở lại bài toán: 

Áp dụng BĐT $(*)$ ta được:

$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$

Do $a^2+b^2+c^2=3$

Vậy $GTNN=9$

Dấu $"="$ xảy ra khi: $a=b=c=1$