Ta có :
A = a3 +b3 + c3+a2(b+c)+b2(c+a)+c2(a+b)
= a2(a+b+c) + b2(a+b+c)+c2(a+b+c)
= (a+b+c)(a2+b2+c2)
V ới a+b+c = 1 thì A = a2+b2+c2
Ta có a2+b2 ≥2ab
a2+ c2 ≥ 2ac
b2 + c2 ≥ 2bc
2(a2 + b2 +c2) ≥ 2(ab + bc + ac)(1)
Cộng thêm vào hai vế của (1) với a2 + b2 + c2
⇔ 3(a2 + b2 + c2) ≥ (a+b+c)2
⇔ 3A ≥ 1/3
⇔ A≥1/3 Dấu “ = ” xảy ra khi a= b =c
Mà a+b+c = 1 nên a =b=c = 1/3
Do đó A đạt giá trị nhỏ nhất là 1/3khi a =b=c = 1/3