x+1=2.Tìm x
1. Cho B=(2+x/2-x -2-x/2+x +4x/4-x^2) : x-3/2x-x^2
a) Rút gọn B
b) Tìm gtri của B khi x=1/2 ; x=2
c) Tìm x để A>0 ; A≤0
d)TÌm x để A<1
2. CHo C= 1/x+1 - ( x^3-x/x^2+1)[ 1 / (x+1)^2 - 1 / x^2-1 ]
a)Rút gọn C
b)Tìm x khi C=1
c)Tìm gtri của C khi x=2
d)Tìm x để C>0; C<0
Cần trước sáng ,mai
cho bt A = \(\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
a) tìm đkxđ và rút gọn A
b) tìm x để A = \(\dfrac{-1}{2}\)
c) tìm x để A<1
d) tìm x nguyên để A nguyên
Mik đang cần gấp, mik cảm ơn!!!
\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(1\right)\)
a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)
\(\left(1\right)\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x+1}\)
b) Để \(A=-\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x^2}{x+1}=-\dfrac{1}{2}\left(x\ne-1\right)\)
\(\Leftrightarrow2x^2=-\left(x+1\right)\)
\(\Leftrightarrow2x^2+x+1=0\)
\(\Delta=1-8=-7< 0\)
Nên phương trình trên vô nghiệm \(\left(x\in\varnothing\right)\)
c) Để \(A< 1\)
\(\Leftrightarrow\dfrac{x^2}{x+1}< 1\)
\(\Leftrightarrow x^2< x+1\left(x\ne-1\right)\)
\(\Leftrightarrow x^2-x-1< 0\)
\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1< 0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}< 0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2< \dfrac{5}{4}\)
\(\Leftrightarrow-\dfrac{\sqrt[]{5}}{2}< x-\dfrac{1}{2}< \dfrac{\sqrt[]{5}}{2}\)
\(\Leftrightarrow\dfrac{-\sqrt[]{5}+1}{2}< x< \dfrac{\sqrt[]{5}+1}{2}\)
d) Để A nguyên
\(\Leftrightarrow\dfrac{x^2}{x+1}\in Z\)
\(\Leftrightarrow x^2⋮x+1\)
\(\Leftrightarrow x^2-x\left(x+1\right)⋮x+1\)
\(\Leftrightarrow x^2-x^2+x⋮x+1\)
\(\Leftrightarrow x⋮x+1\)
\(\Leftrightarrow x-x-1⋮x+1\)
\(\Leftrightarrow-1⋮x+1\)
\(\Leftrightarrow x+1\in\left\{-1;1\right\}\)
\(\Leftrightarrow x\in\left\{-2;0\right\}\left(x\in Z\right)\)
a, Cho `0<x<25`
Tìm GTLN:`(80-2x)(50-2x)x`
b, `0<x<2`. Tìm GTLN: `5x(2-x)`
c, `x≥2`. Tìm GTLN: `x + 1/x`
d, Cho `x,y>0, x+y≤1`. TÌm GTNN: `x + y + 1/x + 1/y`
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
c. Bạn kiểm tra lại đề nhé.
b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)
a.
\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)
Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)
b.
\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)
Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)
c.
Biểu thức này chỉ có min, ko có max
d.
\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
cho bt: P=\(\dfrac{x^2+x}{x^2-2x+1}\):(\(\dfrac{x+1}{x}\)-\(\dfrac{1}{1-x}\)+\(\dfrac{2-x^2}{x^2-x}\))
a,tìm đkxđ rồi rút gọn
b,tính P biết |1+2x|=3
c,tìm x để P=\(\dfrac{-1}{2}\)
d,tìm x để P<1
a: ĐKXĐ: x<>0; x<>1
\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |2x+1|=3
=>x=1(loại); x=-2(nhận)
Khi x=-2 thì P=4/-3=-4/3
c: P=-1/2
=>x^2/x-1=-1/2
=>2x^2=-x+1
=>2x^2+x-1=0
=>2x^2+2x-x-1=0
=>(x+1)(2x-1)=0
=>x=1/2; x=-1
Cho M= \(\dfrac{x^2+x}{x^2-2x+1}\):\(\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
a, Rút gọn M
b, Tìm x để M>1
c, Tìm x\(\in\)Z để M\(\in\)Z
d, Tìm M khi |x+1|=2
a: Ta có: \(M=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}\)
\(=\dfrac{x^2}{x-1}\)
b: Để M>1 thì M-1>0
\(\Leftrightarrow\dfrac{x^2-x+1}{x-1}>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
a) ĐKXĐ: x # 0; x # 1; x# -1
M = (x^2)/(x-1)
1. Cho biểu thức : Q = ( √x + 2 / x +2 √x + 1 - √x - / x -1) ( x+ √x)
a) Rút gọn biểu thức Q
b) Tìm các gtri nguyên x dể Q nhận gtri nguyên
2. Cho biểu thức : A= ( 1/ √x +2 + 1/ √x +2 + 1/ √x -2 ) ( √x -2 /x
a) Tìm đk xác định và rút gọn A
b) Tìm tất cả các gtri của x để A > 1/2
MÌNH CẦN GẤP TRONG TỐI NI NHA
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)
1) Cho 0 < x < 2 Tìm min A = 2/(2-x) +1/x
2) Cho x>1 Tìm min A = x/2 +2/(x-1)
3) cho 0 < x<1 tìm min A = x/(x-1) +4/x
Cho biểu thức \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
a) Rút gọn \(A\)
b) Tính \(A\) biết \(\left|x-3\right|=2\)
c) Tìm \(x\) để \(A=\dfrac{1}{2}\)
d) Tìm \(x\) để \(A>1\)
e) Tìm \(x\) nguyên để \(A\) có giá trị nguyên
f) Với \(x>1\). Tìm giá trị nhỏ nhất của \(A\).
a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |x-3|=2
=>x-3=2 hoặc x-3=-2
=>x=5(nhận) hoặc x=1(loại)
Khi x=5 thì \(E=\dfrac{5^2}{5-1}=\dfrac{25}{4}\)
c: Để E=1/2 thì \(\dfrac{x^2}{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow2x^2-x+1=0\)
hay \(x\in\varnothing\)
f) \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-x+x-1+1}{x-1}=\dfrac{x\left(x-1\right)+x-1+1}{x-1}=x+1+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\dfrac{1}{x-1}}+2=4\)\(A=4\Leftrightarrow x=2\)
-Vậy \(A_{min}=4\)
Cho biểu thức A=\(\dfrac{x^2+x}{x^2-2x+1}:\)(\(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\))
a) Rút gọn A
b) Tính giá trị của A khi |2x-5|=3
c) Tìm x để A = 4
d) Tìm x để A<2
e) Tìm xϵZ để AϵZ
f) Tìm x ϵ Z để A∈ N
g) Với x > 1 . CHứng minh rằng A>1 ∀ x
a) đk: x khác 0;1
\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)
= \(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left[\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)
= \(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
= \(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b) Để \(\left|2x-5\right|=3\)
<=> \(\left[{}\begin{matrix}2x-5=3< =>2x=8< =>x=4\left(c\right)\\2x-5=-3< =>2x=2< =>x=1\left(l\right)\end{matrix}\right.\)
Thay x = 4 vào A, ta có:
\(A=\dfrac{4^2}{4-1}=\dfrac{16}{3}\)
c) Để A = 4
<=> \(\dfrac{x^2}{x-1}=4\)
<=> \(\dfrac{x^2}{x-1}-4=0< =>\dfrac{x^2-4x+4}{x-1}=0\)
<=> \(\left(x-2\right)^2=0\)
<=> x = 2 (T/m)
d) Để A < 2
<=> \(\dfrac{x^2}{x-1}< 2< =>\dfrac{x^2}{x-1}-2< 0< =>\dfrac{x^2-2x+2}{x-1}< 0\)
<=> \(\dfrac{\left(x-1\right)^2+1}{x-1}< 0\)
Mà \(\left(x-1\right)^2+1>0\)
<=> x - 1 < 0 <=> x < 1
KHĐK: x < 1 ( x khác 0)
e) Để A thuộc Z
<=> \(\dfrac{x^2}{x-1}\in Z\)
<=> \(x^2⋮x-1\)
<=> \(x^2-x\left(x-1\right)-\left(x-1\right)⋮x-1\)
<=> \(1⋮x-1\)
Ta có bảng:
x-1 | 1 | -1 |
x | 2 | 0 |
T/m | T/m |
KL: Để A thuộc Z <=> \(x\in\left\{2;0\right\}\)
f) Để A thuộc N <=> \(x\in\left\{2;0\right\}\)
(2/(x+1)-1/(x-1)-5/1-(x^2):2x+1/x^2-1
a)tìm điều kiện của x để giá trị a xác định và cm a=x+2/2x+1
b)tìm giá trị x để a=3
c)tìm giá trị của a với x thỏa mãn x^2-x=0