Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nue nguyen
Xem chi tiết
Dong tran le
3 tháng 1 2018 lúc 22:17

dùng hệ số bất định ấy ,lười lắm

Nguyễn Huy Thắng
4 tháng 1 2018 lúc 23:05

p. tích thành tổng 2 bình phương rồi mincopxki

Nguyễn Minh Phúc
6 tháng 9 2021 lúc 20:34

Dễ chứng minh được \(2x^2+3xy+2y^2\ge\frac{7}{4}\left(x+y\right)^2\)

                       \(\Leftrightarrow\left(\frac{1}{2}x-\frac{1}{2}y\right)^2\ge0\left(true\right)\)

Một cách tương tự :

\(2y^2+3yz+2z^2\ge\frac{7}{4}\left(y+z\right)^2\)

\(2z^2+3xz+2x^2\ge\frac{7}{4}\left(z+x\right)^2\)

\(\Rightarrow A=\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3xz+2x^2}\)

\(\ge\sqrt{\frac{7}{4}\left(x+y\right)^2}+\sqrt{\frac{7}{4}\left(y+z\right)^2}+\sqrt{\frac{7}{4}\left(z+x\right)^2}\)

\(=\frac{\sqrt{7}}{2}\left(x+y+y+z+z+x\right)=\frac{\sqrt{7}}{2}.6=3\sqrt{7}\)

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
đức trung okay
26 tháng 8 2017 lúc 6:24

KON 'NICHIWA ON" NANOKO: chào cô

thỏ
Xem chi tiết
Akai Haruma
30 tháng 8 2019 lúc 19:43

Lời giải:

Đặt $(x,2y,3z)=(a,b,c)$. Khi đó bài toán trở thành:

Cho $a,b,c>0$ thỏa mãn $a+b+c=2$. Tìm GTLN của:

\(S=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ca}{ac+2b}}\)

------------------------------------

Từ $a+b+c=2$ ta có:

\(S=\sqrt{\frac{ab}{ab+(a+b+c)c}}+\sqrt{\frac{bc}{bc+(a+b+c)a}}+\sqrt{\frac{ca}{ac+(a+b+c)b}}\)

\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)

Áp dụng BĐT Cauchy:

\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{(b+a)(b+c)}}\leq \frac{1}{2}\left(\frac{a}{b+a}+\frac{c}{b+c}\right)\)

Cộng theo vế:

\(S\leq \frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{3}{2}\)

Vậy $S_{\max}=\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=c$

hay $x=\frac{2}{3}; y=\frac{1}{3}; z=\frac{2}{9}$

like game
Xem chi tiết
Hoài Thu Vũ
Xem chi tiết
Võ Việt Hoàng
23 tháng 7 2023 lúc 22:00

a) \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\Rightarrow a+b+c=2;a,b,c>0\)

\(\Rightarrow S=\sqrt{\dfrac{\dfrac{ab}{2}}{\dfrac{ab}{2}+c}}+\sqrt{\dfrac{\dfrac{bc}{2}}{\dfrac{bc}{2}+a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

Vì a,b,c>0 nên áp dụng BĐT AM-GM, ta có: 

 \(\sqrt{\dfrac{ab}{ab+2c}}=\sqrt{\dfrac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\dfrac{ab}{c^2+bc+ca+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\) 

\(\sqrt{\dfrac{bc}{bc+2a}}=\sqrt{\dfrac{bc}{\left(b+a\right)\left(c+a\right)}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\)

\(\sqrt{\dfrac{ca}{ca+2b}}=\sqrt{\dfrac{ca}{\left(c+b\right)\left(a+b\right)}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)

\(\Rightarrow S\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi: a=b=c=2/3=>\(\left(x,y,z\right)=\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{2}{9}\right\}\)

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 15:49

Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)

\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)

\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)

Đệ Ngô
Xem chi tiết
Incursion_03
10 tháng 6 2019 lúc 8:37

Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c>0\right)\Rightarrow a+b+c=2\)

Khi đó \(S=\Sigma\sqrt{\frac{\frac{ab}{2}}{\frac{ab}{2}+c}}=\Sigma\sqrt{\frac{ab}{ab+2c}}=\Sigma\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}\)

                                                  \(=\Sigma\sqrt{\frac{ab}{ab+bc+ca+c^2}}=\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng bđt Cô-si có

\(S\le\frac{\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)}{2}=\frac{3}{2}\)

Đệ Ngô
10 tháng 6 2019 lúc 8:49

thank đay là đề thi chuyên toán 

Nguyễn Trí Hào
10 tháng 6 2019 lúc 8:51

Anh ơi năm nay e lên lớp 9 và cũng bắt đầu làm quen với dạng bất đẳng thức , a cho em hỏi mấy cái chữ M nằm ngang là gì thế ạ ? mong anh giải đáp giúp e

pham trung thanh
Xem chi tiết
Đinh Đức Hùng
17 tháng 12 2017 lúc 21:00

Áp dụng bđt \(\frac{a}{b+c+d}\le\frac{1}{9}\left(\frac{a}{b}+\frac{a}{c}+\frac{a}{d}\right)\) ta có :

\(\frac{xy}{2x+y}\le\frac{1}{9}\left(\frac{xy}{x}+\frac{xy}{x}+\frac{xy}{y}\right)=\frac{1}{9}\left(2y+x\right)\)

\(\frac{3yz}{2y+z}\le3.\frac{1}{9}\left(\frac{yz}{y}+\frac{yz}{y}+\frac{yz}{z}\right)=\frac{1}{3}\left(2z+y\right)\)

\(\frac{6xz}{2z+x}\le6.\frac{1}{9}\left(\frac{xz}{z}+\frac{xz}{z}+\frac{xz}{x}\right)=\frac{2}{3}\left(2x+z\right)\)

\(\Rightarrow M\le\frac{1}{9}\left(2y+z\right)+\frac{1}{3}\left(2z+y\right)+\frac{2}{3}\left(2x+z\right)=\frac{13}{9}x+\frac{5}{9}y+\frac{12}{9}z\)

\(=\frac{1}{9}\left(13x+5y+12z\right)=\frac{1}{9}.9=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{10}\)

trần thành đạt
17 tháng 12 2017 lúc 21:07

bạn ơi hình như tìm min

yencba
Xem chi tiết