tính bằng cách thuận tiên nhất :
a, 2022 x 2022 - 2022 x 2021
b, 215 x8 -15 x 8
c, 98 x 101 -98
P(x)=x^101-2022*x^100+2022*x^99-2022*x^98+...+2022*x-1
Khi x=2021
Ta có \(x+1=2022\)
\(P\left(x\right)=x^{101}-\left(x+1\right)x^{100}+...+\left(x+1\right)x-1\)
\(=x^{101}-x^{101}-x^{100}+...+x^2+x-1=x-1\)
-> P(x) = 2020
Tính bằng cách thuận tiện nhất:
2022 + 2022 + 2022 + 2022 + 2022 + 2022 x 5 - 2022 x 7
\(=2022\times\left(1+1+1+1+1+5-7\right)\)
= 2022 x 3
= 6066
2022 + 2022 + 2022 + 2022 + 2022 + 2022 x 5 - 2022 x 7
= 2022 x 1 + 2022 x 1 + 2022 x 1 + 2022 x 1 + 2022 x 1 + 2022 x 5 - 2022 x 7
= 2022 x ( 1 + 1 + 1 + 1 + 1 + 5 - 7 )
= 2022 x 3
= 6066
Câu 10. (1 điểm) Tính bằng cách thuận tiện nhất: 6 x 2022/9 + 2022/9 x 4 - 2022/9
Thực hiện phép tính bằng cách thuận tiện nhất (nếu có thể)
50% + 7/12 - 1/2
2022 x 67 + 2022 x 43 - 2022 x 10
11,3 + 6,9 + 8,7 + 13,1
17,58 x 43 + 57 x 17,58
\(50\%+\dfrac{7}{12}-\dfrac{1}{2}\)
\(=\dfrac{1}{2}+\dfrac{7}{12}-\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\dfrac{7}{12}\)
\(=\dfrac{7}{12}\)
_______________
\(2022\cdot67+2022\cdot43-2022\cdot10\)
\(=2022\cdot\left(67+43-10\right)\)
\(=2022\cdot100\)
\(=202200\)
_____________________
\(10,3+6,9+8,7+13,1\)
\(=\left(13,1+6,9\right)+\left(10,3+8,7\right)\)
\(=20+19\)
\(=39\)
___________________
\(17,58\times43+57\times17,58\)
\(=17,58\times\left(43+57\right)\)
\(=17,58\times100\)
\(=1758\)
tớ ghi sai nên cập nhật lại câu hỏi, phần 3 các bạn trả lời sớm mà bị sai thì bỏ qua cho tớ nhé
\(50\%+\dfrac{7}{12}-\dfrac{1}{2}=\dfrac{1}{2}+\dfrac{7}{12}-\dfrac{1}{2}=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\dfrac{7}{12}=\dfrac{7}{12}\)
\(2022\cdot67+2022\cdot43-2022\cdot10=2022\cdot\left(67+43-10\right)=2022\cdot100=202200\)
\(11,3+6,9+8,7+13,1=\left(11,3+8,7\right)+\left(6,9+13,1\right)=20+20=40\)
\(17,58\cdot43+57\cdot17,58=17,58\cdot\left(43+57\right)=17,58\cdot100=1758\)
Thực hiện phép tính bằng cách thuận tiện nhất ( nếu có thể )
a, 50% + 7/12 - 1/2
b, 2022 x 67 + 2022 x 43 - 2022 x 10
c, 125 - 25 : 3 x 12
d, ( 1/2019x2021 + 1/2020x2022 + 2/2021x2023 ) x ( 1/5 - 1/20 + 1/4 )
\(a,50\%+\dfrac{7}{12}-\dfrac{1}{2}\\ =\dfrac{1}{2}+\dfrac{7}{12}-\dfrac{1}{2}\\ =\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\dfrac{7}{12}\\ =\dfrac{7}{12}\\ b,2022\times67+2022\times43-2022\times10\\ =2022\times\left(67+43-10\right)\\ =2022\times100\\ =202200.\\ c,125-25:3\times12\)
\(=25\times5-25:3\times12\\ =25\times\left(5-\dfrac{1}{3}\right)\times12\\ =25\times\dfrac{14}{3}\times12\\ =1400\)
a,50%+127−21=21+127−21=(21−21)+127=127b,2022×67+2022×43−2022×10=2022×(67+43−10)=2022×100=202200.c,125−25:3×12
tính bằng cách thuận tiện nhất
2021/2022 x 7/16 + 9/16 x 2021/2022=????
\(\dfrac{2021}{2022}.\dfrac{7}{16}+\dfrac{9}{16}.\dfrac{2021}{2022}=\dfrac{2021}{2022}\left(\dfrac{7}{16}+\dfrac{9}{16}\right)=\dfrac{2021}{2022}.1=\dfrac{2021}{2022}\)
tính bằng cách thuận tiện
2022 x 123 x 12 – 2022 x 11
giải giúp mik vs, mik đang cần gấp
`2022 \times 123 \times 12 - 2022 \times 11`
`= 2022 \times (123 \times 12 - 11)`
`= 2022 \times (1476 - 11)`
`= 2022 \times 1465`
`= 2962230`
Câu 5: Tính bằng cách thuận tiện nhất :
2019 x 45 + 54 x 2019 + 2019/2019 x 2022 - 2018 x 201
2019 x 45 + 54 x 2019 + 2019/2019 x 2022 - 2018 x 201
=2019*(45+54+1)-2018
=2019*100-2018
=201900-2018
=199882
2019 x 45 + 54 x 2019 + 2019/2019 x 2022 - 2018 x 201
=2019*(45+54+1)-2018
=2019*100-2018
=201900-2018
=199882
2019 x 45 + 54 x 2019 + 2019/2019 x 2022 - 2018 x 201
=2019x(45+54+1)-2018
=2019x100-2018
=201900-2018
=199882
Học Tốt nhóe ☘
tính bằng cách thuận tiện
2022 x 123 x 12 – 2022 x 11
giải giúp mik vs, mik đang cần gáp
2022 × 123 × 12 - 2022 × 11
= 2022 × (123 × 12 - 11)
= 2022 × (1476 - 11)
= 2022 × 1465
= 2962230
So sánh:
a) A=\(\dfrac{98^{88}+1}{98^{98}+1}\)và B=\(\dfrac{98^{89}+1}{98^{99}+1}\) b) C=\(\dfrac{2022^{2023}+1}{2022^{2021}+1}\)và D=\(\dfrac{2022^{2021}+1}{2022^{2019}+1}\)
a: \(98^{10}\cdot A=\dfrac{98^{98}+98^{10}}{98^{98}+1}=1+\dfrac{98^{10}-1}{98^{98}+1}\)
\(98^{10}\cdot B=\dfrac{98^{99}+98^{10}}{98^{99}+1}=1+\dfrac{98^{10}-1}{98^{99}+1}\)
98^88+1>98^99+1
=>A<B
b: \(\dfrac{1}{2022^2}\cdot C=\dfrac{2022^{2023}+1}{2022^{2023}+2022^2}=1+\dfrac{1-2022^2}{2022^{2023}+2022^2}\)
\(\dfrac{1}{2022^2}\cdot D=\dfrac{2022^{2021}+1}{2022^{2021}+2022^2}=1+\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
2022^2023>2022^2021
=>2022^2023+2022^2>2022^2021+2022^2
=>\(\dfrac{2022^2-1}{2022^{2023}+2022^2}< \dfrac{2022^2-1}{2022^{2021}+2022^2}\)
=>\(\dfrac{1-2022^2}{2022^{2023}+2022^2}>\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
=>C>D