Cho x, y, z > 0 thỏa mãn 1/x + 1/y + 1/z = 1
C/m Vx+yz + V y+zx + Vz+xy ≥ Vxyz + Vx + Vy + Vz
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)
Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)
Cho các số thực x, y,z thỏa mãn 0 ≤ x,y,z ≤ 1 . Chứng minh rằng
x + y + z - 2( xy + yz + zx ) + 4xyz ≤ 1
Lời giải:
$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$
$=(2x-1)(2y-1)(2z-1)+1$
Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$
$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$
$\Rightarrow 2\text{VT}\leq 2$
$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.
Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.
cho x,y,z dương thỏa mãn x+y+z=1. CMR:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Bất đẳng thức cần chứng minh tương đương:
\(\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+zx}+\sqrt{z\left(x+y+z\right)+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\). (1)
Theo bđt Bunhiakowski:
\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\).
Tương tự: \(\sqrt{\left(y+z\right)\left(y+x\right)}\ge y+\sqrt{zx}\); \(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\).
Cộng vế với vế và kết hợp với gt x + y + z = 1 ta có (1) đúng.
Vậy ta có đpcm.
\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
Tương tự:
\(\sqrt{y+zx}\ge y+\sqrt{zx}\) ; \(\sqrt{z+xy}\ge z+\sqrt{xy}\)
Cộng vế với vế:
\(VT\ge\left(x+y+z\right)+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=...\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
cho x;y;z khác 0, thỏa mãn xy+yz+zx=0 và x+y+z=-1
tính gt biểu thức : M= \(\frac{xy}{z}\) + \(\frac{zx}{y}\)+ \(\frac{yz}{x}\)
ta có : xy + yz +zx = 0
* yz = -xy-zx
\(\Rightarrow\)*xy = - yz - zx
*zx= -xy-yz
ta có : M = \(\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)
M = \(\frac{-yz-zx}{z}+\frac{-xy-yz}{y}+\frac{-xy-zx}{x}\)
M = \(\frac{z\times\left(-y-x\right)}{z}+\frac{y\times\left(-x-z\right)}{y}+\frac{x\times\left(-y-z\right)}{x}\)
M = -y - x - x - z - y - z
M = -2y - 2x - 2z
M = -2( x+y+z )
mà x+y+z=-1
M = (-2) . (-1)
M =2
Cho x,y,z khác 0 thỏa mãn xy+yz+zx=0 và x+y+z=-1 Tinh giá trị của M= \(\frac{xy}{z}\)+ \(\frac{zx}{y}\) + \(\frac{yz}{x}\)
\(M=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)
\(=\frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\)
\(=\frac{\left(xy+yz+zx\right)^2-2x^2yz-2xyz^2-2x^2yz}{xyz}\)
\(=\frac{0-2xyz\left(x+y+z\right)}{xyz}\)
\(=0-2\left(x+y+z\right)\)
\(=0-2.\left(-1\right)=0-\left(-2\right)=2\)
Chúc bạn học tốt.
x,y,z>0 thỏa mãn xy+yz+zx=8xyz tìm max của 1/6x+y+z+1/x+6y+z+1/x+y+6z
\(xy+yz+zx=8xyz\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=8\)
\(\Rightarrow\dfrac{8}{x}+\dfrac{8}{y}+\dfrac{8}{z}=64\)
Ta có: \(\dfrac{8}{x}+\dfrac{8}{y}+\dfrac{8}{z}\)
\(=\left(\dfrac{1}{x}+...+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\left(\dfrac{1}{y}+...+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{x}\right)+\left(\dfrac{1}{z}+...+\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}\right)\)
(sau dấu chấm là bốn số tương tự).
\(\ge^{Cauchy-Schwarz}\dfrac{8^2}{6x+y+z}+\dfrac{8^2}{6y+z+x}+\dfrac{8^2}{6z+x+y}\)
\(\Rightarrow64\ge\dfrac{8^2}{6x+y+z}+\dfrac{8^2}{6y+z+x}+\dfrac{8^2}{6z+x+y}\)
\(\Rightarrow\dfrac{1}{6x+y+z}+\dfrac{1}{6y+z+x}+\dfrac{1}{6z+x+y}\le1\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{3}{8}\)
Vậy \(Max\) của biểu thức đã cho là 1.
x,y,z>0 thỏa mãn xy+yz+zx=8xyz tìm max của 1/6x+y+z+1/x+6y+z+1/x+y+6z
Cho x, y, z > 0 thỏa mãn xyz = 1. Chứng minh :
\(\frac{xy}{x^5+xy+y^5}+\frac{yz}{y^5+yz+z^5}+\frac{zx}{z^5+zx+x^5}\le1\)
ủa đây là toám lớp 1 hả anh
Forever_Alone tên là Anh nhưng ko bt họ
cho \(x,y,z>0\) thỏa mãn\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=1\).CMR
\(xy+yz+zx\le\dfrac{3}{4}\)
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}.\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(\ge\dfrac{8}{9}\sqrt{3\left(xy+yz+zx\right)}.\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\sqrt{3\left(xy+yz+zx\right)^3}\)
\(\Rightarrow3\left(xy+yz+zx\right)^3\le\left(\dfrac{9}{8}\right)^2\)
\(\Rightarrow\left(xy+yz+zx\right)^3\le\dfrac{27}{64}\)
\(\Rightarrow xy+yz+zx\le\dfrac{3}{4}\)
Cho x; y; z >0, thoả mãn: 1/xy+ 1/yz+1/zx =1
Q= x/√yz × (x^2 +1)+ y/√zx × (y^2 +1) + z/√xy × ( z^2 +1)