Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ minh châu
Xem chi tiết
Akai Haruma
19 tháng 6 2021 lúc 23:36

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$

$\Rightarrow 3(x^2+y^2)\geq 6xy$

$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$

$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$

Cộng theo vế các BĐT trên:

$4(x^2+y^2)+18\geq 6(xy+x+y)=90$

$\Rightarrow x^2+y^2=18$

Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$

missing you =
19 tháng 6 2021 lúc 23:13

cái này x,y phải là số thực dương chứ nhỉ

\(xy+x+y=15< =>x\left(y+1\right)+\left(y+1\right)=16\)

\(< =>\left(x+1\right)\left(y+1\right)=16\)

đặt \(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\)\(=>a.b=16\)

Ta có:

 \(a^2-2ab+b^2\ge0\)

=> \(a^2+b^2+2ab-4ab\ge0\)\(=>\left(a+b\right)^2\ge4ab\)\(< =>\left(x+y+2\right)^2\ge4.16=64\)

\(=>x+y+2\ge\sqrt{64}=>x+y\ge\sqrt{64}-2=6\)

\(=>\left(x+y\right)^2=6^2=36\)

lại có \(\left(x-y\right)^2\ge0=>\left(x+y\right)^2+\left(x-y\right)^2\ge36\)

\(< =>x^2+2xy+y^2+x^2-2xy+y^2\ge36\)

\(< =>2\left(x^2+y^2\right)\ge36=>x^2+y^2\ge18\)

dấu"=" xảy ra<=>x=y=3=>Min A=18

 

Nguyễn Xuân An
Xem chi tiết
thao nguyen phuong
Xem chi tiết
Inequalities
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 12 2020 lúc 17:07

Không nhìn thấy bất cứ chữ nào của đề bài cả 

Ngô Minh Đức
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2017 lúc 2:09

Ta có  ( x + y ) 2 = x 2 + y 2 + 2 x y = 4 − 2 3 = ( 3 − 1 ) 2    ⇒    x + y = 3 − 1.

Suy ra  P = x + y = 3 − 1      k h i     x + y ≥ 0 1 − 3      k h i     x + y < 0 .

Vũ Tuấn Minh
Xem chi tiết
Lê Thị Thục Hiền
24 tháng 5 2021 lúc 22:28

\(x^2+y^2+xy=3\)

Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)

\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\) 

Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)

mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)

=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1

maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

Nguyễn Việt Lâm
24 tháng 5 2021 lúc 22:29

Đặt \(P=x^2+y^2-xy\)

\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)

\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)

\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)

\(P_{min}=1\) khi \(x=y=1\)

\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow P\le9\)

\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

Blkscr
Xem chi tiết