tìm nghiệm nguyên của ptr x^2-2x=4y^4+4y^3+4y^2+4y
Tìm nghiệm nguyên
a)\(x,y\in Z:x^4+x^2-y^2-y+20=0.\)
b)\(x^4-2x^3+6x^2-4y^2-32x+4y+39=0\)
Tìm x,y nguyên dương thỏa mãn
\(x^2+2x-4y^4+4y=3\)
Giải hệ ptr
\(x^4-x^3+3x^2-4y-1=0\)
\(\sqrt{\frac{x^2-4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y}{3}}=x+2y\)
áp dụng BĐT AM-GM dạng \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) ta có \(\frac{\sqrt{x^2+4y^2}}{2}\ge\frac{x+2y}{2}\)
Mà \(x^2+4y^2\ge4xy\) theo BĐT AM-GM
=>\(x^2+4y^2=4xy\Rightarrow x=2y\).Thay 2y=x vào pt đầu tiên ta được
\(x^4-x^3+3x^2-2x-1=0\Leftrightarrow\left(x-1\right)\left(x^3+3x+1\right)=0\)
TH1:x-1=0
=>x=0
TH2:x3+3x+1=0
bạn tự giải được ko
Tìm nghiệm của đa thức x2+4y2+1-4xy+2x-4y
tìm nghiệm nguyên của phương trình: x^2+2y^2-2x-4y+1=0
1. x^2-y^2-2x+2y 2. x^3-x+3x^2y+3xy^2+y^3-y. 3. 4x^4y^4+1. 4. x^2-2x-4y^2-4y. 5.x^3-x^2-x+1. 6.x^2y-x^3-9y+9x. 7.x^3-2x^2+x-xy^2. 8.x^2-2x-4y^2-4y.
Ói , hoa mắt chóng mặt nhức đầu ,
Tìm nghiệm nguyên dương thỏa mãn: \(4y^2=2+\sqrt{199-x^2-2x}\)
Ta có \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\sqrt{200-\left(x+1\right)^2}\)
Để VT xác định thì \(\left(x+1\right)^2\le200\left(1\right)\)
Mà \(VP⋮2\) nên \(\sqrt{200-\left(x+1\right)^2}⋮2\Leftrightarrow200-\left(x+1\right)^2⋮4\)
Mà \(200⋮4\) nên \(\left(x+1\right)^2⋮4\left(2\right)\)
Mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow x+1\in\left\{-2;0;2\right\}\Leftrightarrow x\in\left\{-3;-1;1\right\}\)
Từ đó tính y nha
Không biết là đúng không nữa cơ.
Ta có: \(4y^2=2+\sqrt{199-x^2-2x}=2+\sqrt{200-\left(x+1\right)^2}\le2+\sqrt{200}\)
\(\Rightarrow y^2\le\dfrac{1+5\sqrt{2}}{2}\Leftrightarrow-\sqrt{\dfrac{1+5\sqrt{2}}{2}}\le y\le\sqrt{\dfrac{1+5\sqrt{2}}{2}}\)
Mà y là số nguyên dương \(\Rightarrow1\le y\le2\Rightarrow y\in\left\{1;2\right\}\)
Tìm được y rồi thì tìm x nha.
tìm nghiệm nguyên dương của phương trình :\(x^2+2y^2-3xy+2x-4y+3=0\)
tìm nghiệm nguyên (x^2)y+4y=x+6
giải hệ phương trình {(2x+1)(y+2) = 9 và (2y+1)(x+3)=12
Bài 1:
$x^2y+4y=x+6$
$\Leftrightarrow y(x^2+4)=x+6$
$\Leftrightarrow y=\frac{x+6}{x^2+4}$
Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên
$\Rightarrow x+6\vdots x^2+4(1)$
$\Rightarrow x^2+6x\vdots x^2+4$
$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$
$\RIghtarrow 6x-4\vdots x^2+4(2)$
Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$
$\Rightarrow 40\vdots x^2+4$
$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)
$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$
Đến đây thay vào tìm $y$ thôi.
Bài 2:
Lấy PT(1) trừ PT (2) theo vế thu được:
$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$
Thay vào PT(1) thì:
$(2.\frac{5y-2}{3}+1)(y+2)=9$
$\Leftrightarrow 10y^2+19y-29=0$
$\Leftrightarrow (y-1)(10y+29)=0$
$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$
Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$
Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$
tìm nghiệm nguyên của pt : x^2 -y^2+2x-4y-10=0, giúp mik vs ạ , mik đang cần gấp
\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)