Từ 7 chữ số 1 2 3 4 5 6 7 có thể lập được bao nhiêu số có 2 chữ số khác nhau và chia hết cho 3
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
A. 20
B. 21
C. 22
D. 23
Giả sử số đó là
Trường hợp 1: c=0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2 c=5 . Với a=2 chọn b có 6 cách nên có 6 số thỏa mãn.
Với a khác 2 chọn a có 5 cách chọn, và tất nhiên b=2 nên có 5 số thỏa mãn.
Do đó có 12+6+5=23 số thỏa mãn.
Chọn D.
Từ các chữ số: 1; 2; 3; 4; 5; 6.
a) Có thể lập được bao nhiêu số có ba chữ số khác nhau?
b) Có thể lập được bao nhiêu số có ba chữ số khác nhau và chia hết cho 3?
a) Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)
b) Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).
Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:
8. 3! = 48 (số)
Cho các chữ số: 1, 2, 3, 4, 5, 6, 7, 8, 9. Từ các chữ số trên có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau thỏa mãn số đó chia hết cho 2 và chữ số 4, 5 phải luôn đứng cạnh nhau?
A. 300 số
B. 114 số
C. 225 số
D. 120 số
Ta có nên d ∈ {2;4;6;8}
·Với d=4; c=5, chọn a có 7 cách, chọn b có 6 cách nên có 7.6= 42 số thỏa mãn.
· Với d=2
1. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn.
2. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn
3. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
4. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Như vậy với d=2 có 6+6+6+6=24 số thỏa mãn.
· Tương tự với d=6; d=8
Vậy có tất cả 42+3.24=114 số thỏa mãn.
Chọn B.
Cho các chữ số: 1, 2, 3, 4, 5, 6, 7, 8, 9. Từ các chữ số trên có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau thỏa mãn số đó chia hết cho 2 và chữ số 4, 5 phải luôn đứng cạnh nhau?
TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5
Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách
TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8
Chọn chữ số còn lại có 6 cách
Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách
\(\Rightarrow3.6.4=72\) số
Tổng: \(42+72=114\) số
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 lập được bao nhiêu số có năm chữ số khác nhau và chia hết cho 4?
Số chia hết cho 4 khi 2 chữ số tận cùng của nó chia hết cho 4, nên ý tưởng ở đây là chọn 2 số tận cùng trước.
Có \(\dfrac{96-04}{4}+1=24\) số có 2 chữ số chia hết cho 4 (tính cả những số bắt đầu bằng 0 như 04, 08...)
Loại ra 2 trường hợp 2 chữ số trùng nhau là \(44\) và \(88\), ta còn 22 chữ số.
Chia 22 chữ số này làm 2 loại: có chứa chữ số 0 bao gồm 6 số là 04, 08, 20, 40, 60, 80 và 16 số không chứa chữ số 0
- TH1: 2 chữ số cuối có chứa 0, chọn 3 chữ số còn lại từ 8 chữ số còn lại và hoán vị chúng có \(A_8^3\) cách \(\Rightarrow6.A_8^3\) số
- TH2: 2 chữ số cuối không chứa chữ số 0:
+ Chọn 3 chữ số còn lại 1 cách bất kì và hoán vị: \(A_8^3\) cách
+ Chọn 3 chữ số còn lại có mặt chữ số 0 và hoán vị sao cho số 0 đứng đầu: \(A_7^2\) cách
\(\Rightarrow16.\left(A_8^3-A_7^2\right)\) số
Cộng 2 trường hợp lại
Cho các số 1, 2, 3, 4, 5, 6, 7, 8, 9. Có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 3
A.120 số
B. 140 số
C. 180 số
D. 160 số
Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị
Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?
a,gồm có 6 chữ số
b,gồm có 6 chữ số khác nhau
c,gồm có 6 chữ số và chia hết cho 2
Bài 3:Cho X={0;1;2;3;4;5;6}
a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?
b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\
c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .
Bài 4:Có bao nhiêu số tự nhiên có tính chất.
a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau
b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau
c,là số lẻ và có hai chữ số khác nhau
d,là số chẵn và có 2 chữ số khác nhau
Bài 5:Cho tập hợp A{1;2;3;4;5;6}
a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A
b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2
c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5
giúp với tớ cần lắm
Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị
Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?
a,gồm có 6 chữ số
b,gồm có 6 chữ số khác nhau
c,gồm có 6 chữ số và chia hết cho 2
Bài 3:Cho X={0;1;2;3;4;5;6}
a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?
b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\
c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .
Bài 4:Có bao nhiêu số tự nhiên có tính chất.
a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau
b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau
c,là số lẻ và có hai chữ số khác nhau
d,là số chẵn và có 2 chữ số khác nhau
Bài 5:Cho tập hợp A{1;2;3;4;5;6}
a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A
b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2
c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5
dài quá
botay.com.vn
giải giúp mình mấy bài này với
từ các chữ số 1,2,4,5,6,7,8,9(không có số 3 nhé)
1. có thể lập được bao nhiêu số tn có 6 chữ số khác nhau
2. lập được bao nhiêu số có 6 chữ số và các chữ số đều chẵn
3.có 7 chữ số trong đó các chữ số các đều chữ số đứng giữa là giống nhau
4.có 5 chữ số khác nhau trong đó chữ số đầu tiên và chữ số cuối cùng là lẻ
5.có 5 chữ số khác nhau trong đó tổng của chữ số đầu tiên và chữ số cuối cùng chia hết cho 10
6.có 5 chứ số trong đó 2 chữ số kề nhau phải khác nhau
7. có 7 chữ số khác nhau trong đó chữ số đầu là lẻ và số đó chia hết cho 2
8. ------------------------------------------------------------------và chữ số cuối chia hết cho 3
9.số tự nhiên chẵn có 7 chữ số khác nhau sao cho chữ số chính giữa là chữ số chẵn
gọi số cần tìm là abcdef( có gạch trên đầu b nhé)
với đk a#0 abcdef khác nhau
1; a có 8 cách chọn
b có 7 cách chọn
c có 6 cách chọn
d có 5 cách chọn
e có có 4 cách chọn
f có 3 cách chọn
=> có 20160 số tmycbt
gọi số cần tìm là abcdef (abcdef chẵn a#0)
a,b,c,d,e,f đều có 4 cách chọn
=> 46 =4096 số tmycbt
4; gọi số cần tìm là abcde (a #0 a,e lẻ a,b,c,d,e khác nhau)
a có 4 cách chọn
e có 3 cách chọn
b có 6 cách chọn
c có 5 cách chọn
d có 4 cách chọn
=> có 1440 số tmycbt
Từ các chữ số 0, 1, 2, 3, 5, 6, 7, 8 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và số tự nhiên do chia hết cho 9.