Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Park Soyeon
Xem chi tiết
Leo Nguyễn
8 tháng 12 2016 lúc 19:47

ĐS: P=8

Nguyễn Thị Huyền Trang
8 tháng 12 2016 lúc 16:36

em cung ham mo tara

Mai Đức Hạnh
27 tháng 8 2018 lúc 21:44

x3 + y3 + z3 =   3xyz

x3 + y3 + z3 – 3xyz = 0

x3 + y3 + z3 – xyz – xyz – xyz = 0

x3 + y3 + z3 – xyz – xyz – xyz  - x2y – y2x – x2z – z2x - y2z – z2y + x2y + y2x + x2z + z2x + y2z+ z2y = 0

(x3 + x2y + x2z) + (y3 + y2x + y2z) + (z3 + z2x + z2y) – ( xyz + x2y + y2x)  - (xyz + x2z + z2x) - (xyz +  z2y + y2z) = 0

( x + y + z ) ( x2 + y2 + z2 – xy – xz – yz) = 0 ó ( x + y + z )( x – y)2(y – z)2(z – x)2 = 0

=> x + y + z = 0  hoặc x = y = z 

mà theo đề ra thì x + y + z \(\ne\)0 nên x = y = z 

vậy P = ..............

Tran Thi Tam Phuc
Xem chi tiết
alibaba nguyễn
19 tháng 11 2016 lúc 22:36

Ta có 

a3 + b3 + c3 - 3abc = 0

<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0

<=> (a + b + c)(a2 + b2 + c2 + 2ab - ac - bc) - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> (a2 + b2 + c2 - ab - ac - bc) = 0

<=> (a2 - 2ab + b2) + (a2 - 2ac - c2) + (b2 - 2bc + c2) = 0

<=> (a - b)2 + (a - c)2 + (b - c)2 = 0

<=> a = b = c

=> P = (1 + 1)(1 + 1)(1 +1) = 8

Chiêu Đoan Phạm
Xem chi tiết
Lightning Farron
21 tháng 12 2016 lúc 20:54

\(x^3+y^3+z^3=3xyz\)

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz=0\)

\(\Rightarrow\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Rightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\) (do \(x+y+z\ne0\))

\(\Rightarrow\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\)\(\Rightarrow\begin{cases}x=y\\y=z\\z=x\end{cases}\)\(\Rightarrow x=y=z\)

\(\Rightarrow P=\left(1+\frac{1}{1}\right)\left(1+\frac{1}{1}\right)\left(1+\frac{1}{1}\right)=2\cdot2\cdot2=8\)

 

 

Lê Xuân Anh
25 tháng 12 2016 lúc 21:24

8

Phạm Long Khánh
Xem chi tiết
Nguyễn Hoàng Anh Phong
14 tháng 9 2018 lúc 15:32

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

I don
14 tháng 9 2018 lúc 15:33

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

=> 1/xy + 1/yz + 1/xz = 0

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

Phạm Mạnh Cường
Xem chi tiết
Minh Triều
7 tháng 7 2016 lúc 9:11

VT=\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy.\left(x+y+z\right)\)

\(=\left(x+y\right)^2-\left(x+y\right).z+z^2-3xy\left(\text{vì }x+y+z=1\right)\)

\(=x^2+2xy+y^2-xz-yz+z^3-3xy\)

\(=x^2+y^2+z^2-xy-yz-xz\)

\(=\frac{1}{2}.\left(2x^2+2y^2+2z^2-2xy-2yz-2xz\right)\)

\(=\frac{1}{2}.\left[\left(x^2-2xy-y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)\right]\)

\(=\frac{1}{2}.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)=VP

=>dpcm

Hoàng Lê Bảo Ngọc
7 tháng 7 2016 lúc 9:09

Ta có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=x+y+z\left(x^2+y^2+z^2+2xy+xz+yz\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=x^2+y^2+z^2-xy-yz-xz=\frac{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)}{2}=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Nguyễn Ngọc Anh
Xem chi tiết
Trịnh Văn Đại
21 tháng 9 2016 lúc 21:37

x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]

2 cái bằng nhau

Nguyễn Ngọc Anh
21 tháng 9 2016 lúc 21:45

Chứng minh hộ tui phát

alibaba nguyễn
21 tháng 9 2016 lúc 23:06

Ta có (a + b + c)=  a3 + b3 + c3 + 3a2b + 3a2c + 3b2a + 3b2c + 3c2a + 3c2b + 6abc

=> VT = (a + b + c)- (3a2b + 3a2c + 3b2a + 3b2c + 3c2a + 3c2b + 9abc)

= (a + b + c)- (3a2b + 3b2a + abc) - (3a2c + 3c2a + 3abc) - (3b2c + 3c2b + 3abc)

= (a + b + c)[a2 + b2 + c2 + 2(ab + ac + bc) - 3(ab + bc + ac)]

= (a + b + c)(a2 + b2 + c2 - ab - bc - ac)

VP = \(\frac{1}{2}\)(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]

\(\frac{1}{2}\)(x+y+z)(2x+ 2b2 + 2c2 - 2ab - 2bc - 2ac)

= (x+y+z)(x+ b2 + c2 - ab - bc - ac)

Từ đó => VT=VP

Phan Bạch Thủy
Xem chi tiết
Luyri Vũ
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 7 2021 lúc 20:06

Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\)

\(P=3a^2+b^2+3c^2\)

Biểu thức này chỉ có min, không có max

Phan Cả Phát
Xem chi tiết
Akai Haruma
24 tháng 5 2018 lúc 18:00

Lời giải:

Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)

Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)

-------

Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)

\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)

\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)

\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)

Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)

Suy ra:

\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)

\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$