`2x-1/3=-3/4`
`7,3-2x=3,5`
a)|-x+2/5|+1/2=3,5 b)21/5+3:|x/4-2/3|=6
c)7,5-3|5-2x|=-4,5 d)1/3-|5/4-2x|=1/4
e)21/5+3:|x/4-2/3|=6
a)|-x+2/5|+1/2=3,5 b)21/5+3:|x/4-2/3|=6
c)7,5-3|5-2x|=-4,5 d)1/3-|5/4-2x|=1/4
e)21/5+3:|x/4-2/3|=6
a: Ta có: \(\left|\dfrac{2}{5}-x\right|+\dfrac{1}{2}=3.5\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=3\\x-\dfrac{2}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{5}\\x=-\dfrac{13}{5}\end{matrix}\right.\)
b: Ta có: \(\dfrac{21}{5}+3:\left|\dfrac{x}{4}-\dfrac{2}{3}\right|=6\)
\(\Leftrightarrow3:\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=6-\dfrac{21}{5}=\dfrac{9}{5}\)
\(\Leftrightarrow\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=\dfrac{5}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x-\dfrac{2}{3}=\dfrac{5}{3}\\\dfrac{1}{4}x-\dfrac{2}{3}=-\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x=\dfrac{7}{3}\\\dfrac{1}{4}x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=-4\end{matrix}\right.\)
tìm x
a, | 5/4x - 7/2 | - | 5/8x + 3/5 | = 0
b, 21/5 + 3 : | x/4 - 2/3 | = 6
c,| 9 + x | = 2x
d, | 2x - 3 | + x = 21
e, | 7 - 2x | + 7 = 2x
f, | -x + 2/5 | + 1/2 = 3,5
G, | 3x - 4 | + 4 = 3x
a) | 5/4x -7/2| - | 5/8x + 3/5| = 0
|5/4x - 7/2| = | 5/8x + 3/5|
TH1: 5/4x - 7/2 = 5/8x + 3/5
=> 5/4x - 5/8x = 3/5 +7/2
5/8x = 41/10
x = 41/10:5/8
x = 164/25
TH2: 5/4x - 7/2 = -5/8x - 3/5
=> 5/4x + 5/8x = -3/5 +7/2
15/8x = 29/10
x = 29/10 : 15/8
x = 116/75
KL: x = 164/25 hoặc x = 116/75
các bài cn lại b lm tương tự nha! h lm dài lắm!
Tìm x, biết:
a, | 2x | - 3,5 | = | - 6,5 |
b, | 2x | . | 3,5 | = | - 28
c, | x - 1,7 | = 2,3
d, | x + \(\frac{3}{4}\)| - \(\frac{1}{3}\)= 0
(x+2)(x+3)-(x-2)(x+5)=0
b)(3x-1)(2x+7)-(x+1(6x-5)
c)(10x+9x)x-(5x-1)(2x+30=8
d)x(2x-1)(x+5)-(2x2+1)(x+4,5)=3,5
e)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
1,x^2+4x+4/2x^2-4x
2,x^2-2x/x^2-4
3,2x^2-2y^3
4,2-2a/a-1
5,2x+4/4-x^2
6,1-x^2/x^2-2x+1
7,3-x/x^2-9
8,2-x/x^2-4x+4
9,x^2-xy-x+y/4-4x+x^2
tìm x
\(9\times5^x=6,5^6+3,5^6\)
\(2^{2x+1}+4^{x+3}=264\)
a) Ta có: \(9\cdot5^x=6\cdot5^6+3\cdot5^6\)
\(\Leftrightarrow9\cdot5^x=9\cdot5^6\)
\(\Leftrightarrow5^x=5^6\)
hay x=6
b) Ta có: \(2^{2x+1}+4^{x+3}=264\)
\(\Leftrightarrow4^x\cdot2+4^x\cdot64=264\)
\(\Leftrightarrow4^x=4\)
hay x=1
tìm x
a, | 5/4x - 7/2 | - | 5/8x + 3/5 | = 0
b, 21/5 + 3 : | x/4 - 2/3 | = 6
c,| 9 + x | = 2x
d, | 2x - 3 | + x = 21
e, | 7 - 2x | + 7 = 2x
f, | -x + 2/5 | + 1/2 = 3,5
G, | 3x - 4 | + 4 = 3x
a: =>|5/4x-7/2|=|5/8x+3/5|
=>5/4x-7/2=5/8x+3/5 hoặc 5/4x-7/2=-5/8x-3/5
=>5/8x=41/10 hoặc 15/8x=29/10
=>x=164/25 hoặc x=116/75
b: =>3:|x/4-2/3|=6-21/5=9/5
=>|1/4x-2/3|=5/3
=>1/4x-2/3=5/3 hoặc 1/4x-2/3=-5/3
=>1/4x=7/3 hoặc 1/4x=-1
=>x=28/3 hoặc x=-4
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(2x-x-9\right)\left(2x+x+9\right)=0\end{matrix}\right.\Leftrightarrow x=9\)
e: =>|2x-7|=2x-7
=>2x-7>=0
=>x>=7/2
1) Thực hiện phép tính :
a) -(5x - 4)(2x+3)
b) ( x - y)( x + xy+ y)
c) 7x( x - 4) - ( 7x +3)(2x - x+4)
2) Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến x:
a) x(3x +12) - ( 7x - 20) + x(2x - 3) - x( 2x +5)
b) 3( 2x-1) - 5( x-3) + 6( 3x - 4) - 19x
3) tìm x:
a) 3x( x - 2) - x( 1+3x) = 14
b) (2x - 1)( x + 5) - (2x +1)( x + 4,5)=3,5
c) 3x - 3x( x - 3) = 36
d) (3x + 1)(x - 1) + x( 4 - 3x )= 5
Bài 3:
a: =>3x^2-6x-x-3x^2=14
=>-7x=14
=>x=-2
b: \(\Leftrightarrow2x^2+10x-x-5-2x^2-9x-x-4.5=3.5\)
=>-x-9,5=3,5
=>-x=12
=>x=-12
c: =>\(3x-3x^2+9x=36\)
=>-3x^2+12x-36=0
=>x^2-6x+12=0(loại)
d: \(\Leftrightarrow3x^2-3x+x-1+4x-3x^2=5\)
=>2x=6
=>x=3
|2x|-|-2,5|=|-7,5|
|2x-3|=1 |x-3,5|+|y-1,3|=0
a)\(\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\Rightarrow\left|2x\right|-2,5=7,5\)
\(\Rightarrow\left|2x\right|=10\)
\(\Rightarrow\left[{}\begin{matrix}2x=10\Rightarrow x=5\\2x=-10\Rightarrow x=-5\end{matrix}\right.\)
b) \(\left|2x-3\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=1\Rightarrow2x=4\Rightarrow x=2\\2x-3=-1\Rightarrow2x=2\Rightarrow x=1\end{matrix}\right.\)
c) \(\left|x-3,5\right|+\left|y-1,3\right|=0\)
Ta có: \(\left|x-3,5\right|\ge0\forall x\)
\(\left|y-1,3\right|\ge0\forall y\)
\(\Rightarrow\left|x-3,5\right|+\left|y-1,3\right|\ge0\forall x,y\)
Dấu "=" xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\Rightarrow x=3,5\\y-1,3=0\Rightarrow y=1,3\end{matrix}\right.\)
\(a)\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\Rightarrow\left|2x\right|-2,5=7,5\)
\(\Rightarrow\left|2x\right|=10\)
\(\Rightarrow\left[{}\begin{matrix}2x=10\Rightarrow x=5\\2x=-10\Rightarrow x=-5\end{matrix}\right.\)
Vậy ...............
\(b)\left|2x-3\right|=1\)
\(\Rightarrow\left|2x\right|-3=1\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=1\Rightarrow2x=4\Rightarrow x=2\\2x-3=-1\Rightarrow2x=2\Rightarrow x=1\end{matrix}\right.\)
Vậy .........
\(c)\left|x-3,5\right|+\left|y-1,3\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3,5=0\Rightarrow x=3,5\\y-1,3=0\Rightarrow y=1,3\end{matrix}\right.\)
Vậy ..............
Chúc bạn học tốt!