Thu gọn
\(\frac{12x^2-26x-16}{4x^2+4x+1}\)
rút gọn
\(\frac{a^2x^3-a^2}{ax^2+ax+a}\)
\(\frac{12x^2-26x-16}{4x^2+4x+1}\)
\(\frac{\left(x+a\right)^2-x^2}{2x+a}\)
\(\frac{a^2x^3-a^2}{ax^2+ax+a}=\frac{a^2\left(x^3-1\right)}{a\left(x^2+x+1\right)}=\frac{a^2\left(x-1\right)\left(x^2+x+1\right)}{a\left(x^2+x+1\right)}=a\left(x-1\right)=ax-a\)
\(\frac{12x^2-26x-16}{4x^2+4x+1}=\frac{\left(6x-16\right)\left(2x+1\right)}{\left(2x+1\right)^2}=\frac{6x-16}{2x+1}\)
\(\frac{\left(x+a\right)^2-x^2}{2x+a}=\frac{\left(x+a+x\right)\left(x+a-x\right)}{2x+a}=\frac{\left(2x+a\right)a}{2x+a}=a\)
Bài 1: Rút gọn biểu thức:
a) A = \(\left(\frac{1}{x^2-4x}+\frac{2}{16-x^2}+\frac{4}{4x+16}\right):\frac{1}{4x}\)
\(A=\left(\dfrac{1}{x^2-4x}+\dfrac{2}{16-x^2}+\dfrac{4}{4x+16}\right):\dfrac{1}{4x}\left(x\ne4;x\ne-4;x\ne0\right).\)
\(A=\left(\dfrac{1}{x\left(x-4\right)}+\dfrac{-2}{\left(x+4\right)\left(x-4\right)}+\dfrac{1}{x+4}\right).4x\).
\(A=\dfrac{x+4-2x+x^2-4x}{x\left(x-4\right)\left(x+4\right)}.4x.\)
\(A=\dfrac{x^2-5x+4}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{4\left(x-1\right)}{x+4}.\)
\(P=\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
rút gọn P
Rút gọn biểu thức \(A=\frac{4x}{x^2+2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x^2-2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x\left(x-2\right)}-\frac{3}{x-2}+\frac{12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x\left(x+2\right)-3x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+2x+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+14x}{x\left(x-2\right)\left(x+2\right)}\)
Rút gọn biểu thức \(A=\frac{4x}{x^2+2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\left(\frac{2+4x}{8+4x}-\frac{x}{3x-6}+\frac{2x^3}{12x-3x^3}\right)\div\frac{6x+13x^2}{24x-12x^2}\)
a) Tìm TXĐ và Rút gọn A
b) Tìm x để \(A>0,A>-1\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0
Tìm giá trị lớn nhất của biểu thức:
a) \(A=\frac{8x^2-1}{4x^2+1}+12\)
b) \(B=\left(\frac{x^3+8}{x^3-8}.\frac{4x^2+8x+16}{x^2-4}-\frac{4x}{x-2}\right):\frac{-16}{x^4-6x^3+12x^2-8x}\)
a) Theo mình thì chỉ min thôi nhé!
\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)
b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
ĐKXĐ: \(x\ne-1;\) \(x\ne-3;\)\(x\ne-5;\)\(x\ne-7\)
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\Leftrightarrow\)\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\Leftrightarrow\)\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)
\(\Leftrightarrow\)\(\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{3}{8}\)
\(\Rightarrow\)\(3\left(x+1\right)\left(x+7\right)=48\)
\(\Leftrightarrow\)\(x^2+8x+7=16\)
\(\Leftrightarrow\)\(x^2+8x-9=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=9\left(TMĐKXĐ\right)\end{cases}}\)
Vậy...
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\Leftrightarrow\frac{1}{x^2+x+3x+3}+\frac{1}{x^2+3x+5x+15}+\frac{1}{x^2+5x+7x+35}=\frac{3}{16}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)
\(=\frac{3\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)
Mẫu của mỗi phân thức bằng nhau nên => tử của mỗi phân thức cũng phải bằng nhau
=> Đến đây thì dễ rồi, bạn giải ra tìm x
Rút gọn các phân thức sau
1) \(\frac{x^2-6x+5}{4x^3-3x^2-4x+3}\)
2) \(\frac{x^2-12x-13}{6x^3+25x^2+12x-7}\)