Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn Quốc Bảo
Xem chi tiết
Phí Thị Thuỳ Dương
Xem chi tiết
zozobadausautay
Xem chi tiết

a; 4a + 3 và 2a + 3 

Gọi ƯCLN(4a + 3; 2a + 3) = d

Theo bài ra ta có:

\(\left\{{}\begin{matrix}4a+3⋮d\\2a+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+3-4a-6⋮d\end{matrix}\right.\) 

⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\\left(4a-4a\right)+\left(2-6\right)⋮d\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4⋮d\end{matrix}\right.\) ⇒ d \(\in\) Ư(4) = {1; 2; 4}

Nếu d = 2 ⇒ 4a + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lý)

Nếu d = 4 ⇒ 4a + 3 ⋮  4 ⇒ 3 ⋮ 4 (vô lý)

Vậy d =  1 ⇒ (4a + 3; 2a + 3) = 1

Hay 4a + 3 và 2a + 3 là hai số nguyên tố cùng nhau với mọi giá trị của a.

 

 

 

Nguyễn thị lan
Xem chi tiết
N.Đ.Hưng
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 22:09

a: \(\left\{{}\begin{matrix}n+2⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: với mọi số nguyên n thì n+2 và n+3 là hai số nguyên tố cùng nhau

Nguyễn Minh Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

кαвαиє ѕнιяσ
Xem chi tiết

k hộ mik nhéundefinedundefined

Khách vãng lai đã xóa

TL

undefinedundefinedundefinedk hộ mik

Hoktot~

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

Chi Quỳnh
Xem chi tiết
Minz Ank
Xem chi tiết
Trần Minh Hoàng
14 tháng 1 2021 lúc 21:08

a) Đặt d = (4n + 3, 2n + 3).

Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.

Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3

\(\Leftrightarrow n⋮3̸\).

Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.