Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Imiko5
Xem chi tiết
Xyz OLM
21 tháng 3 2023 lúc 21:47

ĐKXĐ : \(\left\{{}\begin{matrix}4x^2-1\ne0\\8x^3+1\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm\dfrac{1}{2}\)

\(P=\dfrac{2x^5-x^4-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)

\(=\dfrac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\dfrac{x^4-1}{2x+1}+\dfrac{2}{2x+1}=\dfrac{x^4+1}{2x+1}\)

Nguyễn Văn Nhân
21 tháng 3 2023 lúc 15:03

https://sg.docworkspace.com/l/sIM-LioBEocfloAY

Nguyễn Văn Nhân
21 tháng 3 2023 lúc 15:12

Quỳnh Hoa Tạ
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Nguyễn Hồng Hà My
6 tháng 1 2018 lúc 18:54

https://olm.vn/hoi-dap/question/1027904.html

tk nhé 

^_^

๖Fly༉Donutღღ
6 tháng 1 2018 lúc 18:55

\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{ }\)

\(P=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(P=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2}{2x+1}\)

\(P=\frac{x^4-1}{2x+1}+\frac{2}{2x+1}\)

\(P=\frac{x^4+1}{2x+1}\)

Vậy \(P=\frac{x^4+1}{2x+1}\)

๖Fly༉Donutღღ
7 tháng 1 2018 lúc 19:14

Nguyễn Hồng Hà My làm gì có thế mà cũng được hác à

Nguyễn Anh Thư
Xem chi tiết
Nguyễn Anh Thư
25 tháng 8 2020 lúc 19:38

Đề bài mình viết thiếu là CM biểu thức sau không phụ thuộc vào x ( nghĩa là kết quả phải ra số tự nhiên không có x ) 

Khách vãng lai đã xóa
ミ★Ƙαї★彡
25 tháng 8 2020 lúc 19:41

\(A=\left(2x+1\right)\left(x-1\right)-2x\left(x+2\right)-5\left(-x+3\right)+4\)

\(=2x^2-2x+x-1-2x^2-4x+5x-15+4\)

\(=-12\left(đpcm\right)\)

Khách vãng lai đã xóa
ミ★Ƙαї★彡
25 tháng 8 2020 lúc 19:44

\(B=\left(4x+3\right)\left(2x-5\right)-\left(8x+1\right)\left(x+3\right)+13\left(3x+1\right)+2\)

\(=8x^2-20x+6x-15-\left(8x^2+24x+x+3\right)+39x+13+2\)

\(=-3\left(đpcm\right)\)

Khách vãng lai đã xóa
Nguyễn Thế Phúc Anh
Xem chi tiết
Lê Bùi
8 tháng 3 2018 lúc 11:31

\(P=\dfrac{2x^5-x^4-2x+1}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(P=\dfrac{2x^5-x^4-2x+1}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2}{\left(2x+1\right)}\)

\(P=\dfrac{2x^5-x^4-2x+1+2\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(P=\dfrac{2x^5-x^4+2x-1}{\left(2x-1\right)\left(2x+1\right)}\)

\(P=\dfrac{x^4\left(2x-1\right)+2x-1}{\left(2x-1\right)\left(2x+1\right)}\)

\(P=\dfrac{\left(2x-1\right)\left(x^4+1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{x^4+1}{2x+1}\)

cho P=6

\(\dfrac{x^4+1}{2x+1}=6\)

\(\Leftrightarrow x^4+1=6\left(2x+1\right)\)(đk \(x\ne-\dfrac{1}{2}\))

\(\Leftrightarrow x^4-12x-5=0\)

rồi suy ra x

Trương Anh Kiệt
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 15:57

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

Dấu \("="\Leftrightarrow x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x=1\)

\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)

Dấu \("="\Leftrightarrow x=-1\)

Nguyễn Việt Lâm
11 tháng 9 2021 lúc 16:00

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

\(A_{min}=-7\) khi \(x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(B_{min}=-\dfrac{1}{4}\) khi \(x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

\(C_{min}=-4\) khi \(x=1\)

Biểu thức D không tồn tại cả max lẫn min

Akai Haruma
11 tháng 9 2021 lúc 17:09

1.

$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow A\geq 2.0-7=-7$

Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$

2.

$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$

Vậy $B_{\min}=-0,25$ khi $x=-1,5$

3.

$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$

Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$

4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất

Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

Trương Anh Kiệt
Xem chi tiết
Minh Hiếu
10 tháng 9 2021 lúc 20:50

A\(=2x^2-8x+1\)

=2x(x-4)+1≥1

Min A=1 ⇔x=4

B=\(x^2+3x+2\)

\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\)

Min B=-1/4⇔x=-3/2

Minh Hiếu
10 tháng 9 2021 lúc 20:55

C=\(4x^2-8x\)

=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)

=(2x-4)^2 -16≥-16

Min C=-16 ⇔x=2

Minh Hiếu
10 tháng 9 2021 lúc 21:00

D=\(\dfrac{1}{-\left(x^2-2x+1\right)+6}\)

=\(\dfrac{1}{-\left(x-1\right)^2+6}\)\(\dfrac{1}{6}\)

Min D=1/6 ⇔x=1

thuyhang tran
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 9 2021 lúc 14:43

\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 14:42

Bài 1: 

a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)

\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)

\(\Leftrightarrow4x=8\)

hay x=2

b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)

\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)

\(\Leftrightarrow16x^3-8x^2+7x^3=15\)

\(\Leftrightarrow23x^3-8x^2-15=0\)

\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)

\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 14:43

Bài 2:

a: Ta có: \(P=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

=3

b: ta có: \(Q=x\left(2x^2-4x+8\right)+12x^2\left(\dfrac{1}{3}-\dfrac{1}{6}x\right)-8x+9\)

\(=2x^3-4x^2+8x+4x^2-2x^3-8x+9\)

=9

trần hải bách
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 23:24

a: Ta có: \(\left(8x^3-4x^2\right):4x-\left(4x^2-5x\right):2x+\left(2x\right)^2\)

\(=2x^2-x-2x+\dfrac{5}{2}+4x^2\)

\(=6x^2-3x+\dfrac{5}{2}\)

b: Ta có: \(\left(3x^3-x^2y\right):x^2-\left(xy^2+x^2y\right):xy+2x\left(x-1\right)\)

\(=3x-y-y-x+2x^2-2x\)

\(=2x^2-2y\)