Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
changchan
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 9:25

loading...

 

Nguyễn Thị Hương Trà
Xem chi tiết
BOY 7A1
12 tháng 4 2016 lúc 18:43

tích mk với mk âm điểm rồi các bn ơi

Nguyễn Hằng
Xem chi tiết
Thanh Quân
28 tháng 1 2022 lúc 13:08

a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\) 

Xét △ABM và △ACN có:

\(AB=AC\) ( Vì △ABC cân)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

Do đó : △ABC=△ACN\(\left(c.g.c\right)\)

b)Xét △vuoongAHB và △vuoongAKC có

AB=AC(vì △ABC cân)

\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)

⇒△AHB=△AKC ( cạnh huyền góc nhọn)

⇒AH=AK

 

 

Nguyễn Huy Tú
28 tháng 1 2022 lúc 13:11

a, Ta có : ^ABM = ^MBC - ^ABC (1) 

^ACN = ^NCB - ^ACB (2) 

Từ (1) ; (2) suy ra ^ABM = ^ACN 

Xét tam giác ABM và tam giác ANC có : 

^ABM = ^ANC ( cmt ) 

AB = AC ( gt )

MB = NC (gt)

Vậy tam giác ABM = tam  giác ACN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

Xét tam giác AMN có : AN = AM 

Vậy tam giác AMN là tam giác cân tại A 

=> ^M = ^N (3) 

b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4) 

^ACK = ^ANC ( cùng phụ ^KCN ) (5) 

Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK 

=> ^HBM = ^KCN 

Xét tam giác AHB và tam giác AKC ta có : 

^ABH = ^ACK ( cmt )

AB = AC 

^AHB = ^AKC = 900

Vậy tam giác AHB = tam giác AKC ( ch - gn )

=> AH = AK ( 2 cạnh tương ứng )

c, Ta có : ^HBM = ^OBC ( đối đỉnh ) 

^KCN = ^BCO ( đối đỉnh ) 

mà ^HBM = ^KCN (cmt) 

Xét tam giác OBC có : 

^OBC = ^OCB vậy tam giác OBC cân tại O

 

☆Châuuu~~~(๑╹ω╹๑ )☆
28 tháng 1 2022 lúc 13:18

\(Ta.có:\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\ Mà.\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}\\ \Rightarrow\widehat{ABM}=\widehat{ACN}\\ Xét.\Delta ABM.và.\Delta ACN.có:\\ MB=MC\\ \widehat{ABM}=\widehat{ACN}\left(chứng.minh.trên\right)\\ AB=AC\left(\Delta ABC.cân\right)\\ Vậy.\Delta ABM=\Delta ACN\left(c.g.c\right)\\ \Rightarrow AM=AN\left(2.cạnh.tương.ứng\right)\\ \widehat{M}=\widehat{N}\left(2.góc.t.ứng\right)\)   

\(b,Xét.\Delta MBH.và.\Delta NCK.có:\\ \widehat{BHM}=\widehat{CKN}=90^0\\ MB=MC\\ \widehat{M}=\widehat{N}\left(cmt\right)\\ Vậy.\Delta MBH=\Delta NCK\left(cạnh.huyền,góc.nhọn\right)\\ \Rightarrow\widehat{HBM}=\widehat{KCN}\left(2.góc.t.ứng\right)\\ \Rightarrow MH=KN\left(2.cạnh.t.ứng\right)\\ Mà.AM=AH+HM;AN=AK+KN\\ \Rightarrow AH=AK\)  

\(c,Ta.có:\widehat{HBM}=\widehat{KCN}\left(chứng.minh.trên\left(cmt\right)\right)\\ Mà.\widehat{HBM}=\widehat{CBO}\left(2.góc.đối.đỉnh\right)\\ \widehat{KCN}=\widehat{BCO}\left(2.góc.đối.đỉnh\right)\\ \Rightarrow\widehat{CBO}=\widehat{BCO}\\ \Rightarrow\Delta OBC.là.\Delta cân\)

Anh Bao
Xem chi tiết
Buddy
3 tháng 3 2021 lúc 20:41

Violympic toán 7

Chàng Trai 2_k_7
Xem chi tiết
Tran Le Khanh Linh
21 tháng 4 2020 lúc 21:41

a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)

mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN

=> Tam giác AMN cân tại A

b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)

<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)

=> AH=CK

Khách vãng lai đã xóa
Quang Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 22:45

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

c: Ta có: ΔABH=ΔACK

nên AH=AK

d: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có 

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

mà \(\widehat{HBM}=\widehat{OBC}\)

và \(\widehat{KCN}=\widehat{OCB}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

Đặng Thanh Hằng
Xem chi tiết
Nhuân Nguyễn
Xem chi tiết
Thanh Hoàng Thanh
30 tháng 1 2022 lúc 11:09

a) \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).

Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)

Xét \(\Delta ABM\) và \(\Delta ACN:\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)

\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)

b) Xét \(\Delta ABH\) và \(\Delta ACK:\)

\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)

\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).

\(\Rightarrow\) AH = AK (2 cạnh tương ứng).

c) Xét \(\Delta AOH\) và \(\Delta AOK:\)

\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).

\(\Rightarrow\) OH = OK (2 cạnh tương ứng).

Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)

\(\Rightarrow\) OB = OC.

\(\Rightarrow\Delta OBC\) cân tại O.

Nguyễn Bé Nak
Xem chi tiết
Nguyễn Trần Thành Đạt
17 tháng 2 2021 lúc 5:23

Này là môn Văn em đừng đăng đề toán nhé!