Cho tam giác ABC nhọn, 2 đường cao BM, CN:
a, CMR: AN. AB= AM. AC
b, Lấy K trên BM sao cho AK vuông góc với BM. Lấy I trên CN sao cho AK vuông góc với BI. CMR: Tam giác AKI cân.
Cho tam giác ABC nhọn, 2 đường cao BM, CN:
a, CMR: AN. AB= AM. AC
b, Lấy K trên BM sao cho AK vuông góc với BM. Lấy I trên CN sao cho AK vuông góc với BI. CMR: Tam giác AKI cân.
cho tam giác nhọn ABC, 2 đường cao BM&CN . trên tia đối của BM lấy điểm D, trên tia đối vủa CN lấy điểm E sao cho BD=AC, CE=AB. CMR: a, góc ACE=góc ABD.b, tam giác ACE= tam giác BDA c, Tam giác AED vuông cân
8 )cho tam giác ABC cân tại A . trên tia đối BC lấy diểm M , trên tia đối CB lấy điểm N sao cho BM = CN
a) cmr tam giác ABM = tam giác ACN
b ) Kẻ BH vuông góc với AM , CK vuông góc AN ( H thuộc AM ; K thuộc AN ) cmr AH = AK
c) Gọi O giao điểm của HB và KC . Tam giác OBC là tam giác gì ? Vì sao ?
* cmr = chứng minh rằng *
có hình vẽ càng tốt
a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\)
Xét △ABM và △ACN có:
\(AB=AC\) ( Vì △ABC cân)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
BM=CN(gt)
Do đó : △ABC=△ACN\(\left(c.g.c\right)\)
b)Xét △vuoongAHB và △vuoongAKC có
AB=AC(vì △ABC cân)
\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)
⇒△AHB=△AKC ( cạnh huyền góc nhọn)
⇒AH=AK
a, Ta có : ^ABM = ^MBC - ^ABC (1)
^ACN = ^NCB - ^ACB (2)
Từ (1) ; (2) suy ra ^ABM = ^ACN
Xét tam giác ABM và tam giác ANC có :
^ABM = ^ANC ( cmt )
AB = AC ( gt )
MB = NC (gt)
Vậy tam giác ABM = tam giác ACN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
Xét tam giác AMN có : AN = AM
Vậy tam giác AMN là tam giác cân tại A
=> ^M = ^N (3)
b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4)
^ACK = ^ANC ( cùng phụ ^KCN ) (5)
Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK
=> ^HBM = ^KCN
Xét tam giác AHB và tam giác AKC ta có :
^ABH = ^ACK ( cmt )
AB = AC
^AHB = ^AKC = 900
Vậy tam giác AHB = tam giác AKC ( ch - gn )
=> AH = AK ( 2 cạnh tương ứng )
c, Ta có : ^HBM = ^OBC ( đối đỉnh )
^KCN = ^BCO ( đối đỉnh )
mà ^HBM = ^KCN (cmt)
Xét tam giác OBC có :
^OBC = ^OCB vậy tam giác OBC cân tại O
\(Ta.có:\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\ Mà.\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}\\ \Rightarrow\widehat{ABM}=\widehat{ACN}\\ Xét.\Delta ABM.và.\Delta ACN.có:\\ MB=MC\\ \widehat{ABM}=\widehat{ACN}\left(chứng.minh.trên\right)\\ AB=AC\left(\Delta ABC.cân\right)\\ Vậy.\Delta ABM=\Delta ACN\left(c.g.c\right)\\ \Rightarrow AM=AN\left(2.cạnh.tương.ứng\right)\\ \widehat{M}=\widehat{N}\left(2.góc.t.ứng\right)\)
\(b,Xét.\Delta MBH.và.\Delta NCK.có:\\ \widehat{BHM}=\widehat{CKN}=90^0\\ MB=MC\\ \widehat{M}=\widehat{N}\left(cmt\right)\\ Vậy.\Delta MBH=\Delta NCK\left(cạnh.huyền,góc.nhọn\right)\\ \Rightarrow\widehat{HBM}=\widehat{KCN}\left(2.góc.t.ứng\right)\\ \Rightarrow MH=KN\left(2.cạnh.t.ứng\right)\\ Mà.AM=AH+HM;AN=AK+KN\\ \Rightarrow AH=AK\)
\(c,Ta.có:\widehat{HBM}=\widehat{KCN}\left(chứng.minh.trên\left(cmt\right)\right)\\ Mà.\widehat{HBM}=\widehat{CBO}\left(2.góc.đối.đỉnh\right)\\ \widehat{KCN}=\widehat{BCO}\left(2.góc.đối.đỉnh\right)\\ \Rightarrow\widehat{CBO}=\widehat{BCO}\\ \Rightarrow\Delta OBC.là.\Delta cân\)
Cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm M,trên tia đối của tia CB lấy điểm N sao cho BM=CN. a)CMR: tam giác AMN là tam giác cân. b) Kẻ BH vuông góc với AM(H thuộc AM),kẻ CK vuông góc với AN(K thuộc AN).CMR BH= CK. c)CMR:AH=AK. d) Gọi O là giao điểm của HB và KC.CMR :AO là phân giác của góc MAN
a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)
mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN
=> Tam giác AMN cân tại A
b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)
<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)
=> AH=CK
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia
CB lấy điểm N sao cho BM = CN.
a) CMR tam giác AMN là tam giác cân
b) Kẻ BH vuông góc với AM (H thuộc AM), kẻ CK vuông góc với AN (K thuộc AN). CMR : BH = CK.
c) CMR: AH = AK.
d) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao ?
e) Cho tam giác ABH vuông tại H, biết AB = 13 cm, AH = 12 cm.Tính độ dài cạnh BH ?
f) Chứng minh HK // MN
g) Gọi I là trung điểm của BC. Chứng minh 3 điểm A, O, I thẳng hàng.
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
c: Ta có: ΔABH=ΔACK
nên AH=AK
d: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔHBM=ΔKCN
Suy ra: \(\widehat{HBM}=\widehat{KCN}\)
mà \(\widehat{HBM}=\widehat{OBC}\)
và \(\widehat{KCN}=\widehat{OCB}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a,cho tam giác ABC góc B =90độ biết AC=10cm ,AB=8cm.tính BC
b,cho tam giác ABC cân tại A trên tia đối của BC lấy H.trên tia đối của CB lấy K sao cho BH=CK
1,cm tam giác AKH cân
2,kẻ BM vuông AH taih M .kẻ CN vuông AK tại N .cm BM=CN
3,cm AM =AN
4)cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy điểm N sao cho BM=CN
a) chứng minh: tam giác ABM = tam giác ACN
b) kẻ BH vuông góc AM; CK vuông góc AN(H thuộc AM;K thuộc AN). chứng minh: AH=AK
c) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì ? vì sao ?
5)tìm các số x,y,z biết: \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\)và x+y+z=-20
a) \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).
Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)
Xét \(\Delta ABM\) và \(\Delta ACN:\)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)
\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)
b) Xét \(\Delta ABH\) và \(\Delta ACK:\)
\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)
\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).
\(\Rightarrow\) AH = AK (2 cạnh tương ứng).
c) Xét \(\Delta AOH\) và \(\Delta AOK:\)
\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).
\(\Rightarrow\) OH = OK (2 cạnh tương ứng).
Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)
\(\Rightarrow\) OB = OC.
\(\Rightarrow\Delta OBC\) cân tại O.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN.
a)CMR: tam giác AMN cân.
b)Kẻ BH vuông góc với AM(H ϵ AM), kẻ CK vuông góc với AN(Kϵ AN). CMR: tam giác BHM= tam giác CKN.
c)Các đường thẳng HB và KC cắt nhau tại O. Tam giác OBC là tam giác j? Tại sao?
d)Khi góc BAC=60 độ và BM=CN=BC, tính số đo cá góc của tam giác AMN và xác định dạng của tam giác OBC.
e)Kẻ AD vuông góc với BC(DϵBC), biết rằng AB=10cm,BC=16cm. Tính độ dài AD.
Này là môn Văn em đừng đăng đề toán nhé!