a: Xét ΔANC vuông tại N và ΔAMB vuông tại M có
góc NAC chung
=>ΔANC đồng dạng với ΔAMB
=>AN/AM=AC/AB
=>AN*AB=AM*AC
b: AK vuông góc BM thì K trùng với M rồi bạn
a: Xét ΔANC vuông tại N và ΔAMB vuông tại M có
góc NAC chung
=>ΔANC đồng dạng với ΔAMB
=>AN/AM=AC/AB
=>AN*AB=AM*AC
b: AK vuông góc BM thì K trùng với M rồi bạn
cho tam giác abc cân tại a ( góc a= 135 độ) trên cạnh bc lấy m,n sao cho am vuông góc với ac, an vuông góc với ab. cmr: bm^2=bc.mn
Cho tam giác ABC cân tại A, AH là đường cao. Trên AB lấy M, trên tia đối của AC lấy N sao cho BM=CN. kẻ tia Cx vuông góc AN, Cx cắt AH tại O. BC cắt MN tại I. Trên OI lấy G sao cho GO=2GI. CMR G là trọng tâm tam giác MON
Cho tam giác ABC, trên cạnh AC lấy điểm M sao cho ABM = ACB. Từ A kẻ AH vuông góc với BC (H thuộc BC), AK vuông góc với BM (K thuộc BM).
a) Chứng minh tam giác ABM đồng dạng với tam giác ACB.
b) Chứng minh: AB.AK = AM.AH.
c) Chứng minh: Diện tích tam giác AHB gấp 4 lần diện tích tam giác AKM (biết AB = 3cm, AC = 6cm).
Cho tam giác ABC(AB>AC)
1, Kẻ đường cao BM,CN. a) CmR: ABM~CAN
b) CmR: góc AMN=góc ABC
2, Trên AB lấy K sao cho BK=AC. Gọi E,F là trung điểm BC và AK. CmR: EF// với tia phân giác Ax của góc ABC
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy điểm M.Qua A kẻ đường thẳng vuông góc với BM cắt BC tại D.Trên đường thẳng BC lấy điểm E sao cho D là tđ EC. Qua E kẻ đường thẳng vuông góc với BM cắt AB tại N. Cmr: MM//BC.
Cho tam giác abc nhọn kẻ tia bx vuông góc với ab cy vuông góc với ac ( bx và cy nằm ngoài tam giác ) trên tia bx lấy m sao cho bm = ba trên tia cy lấy điểm n sao cho cn =ca gọi i là trung điểm của mn gọi d là điểm đối xứng của b qua i nd cắt ba tại k chứng minh rằng ab=nd , góc dnc = bac , tam giác dcb vuông cân
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ BH ⊥ AM, kẻ CK ⊥ AN. Chứng minh rằng BH = CK
c) CMR AH = AK
d) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì ? Vì sao
e) Khi góc BAC = 60o và BM = CN = BC hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC
Cho tam giác ABC có 3 góc nhọn có AB =2cm, AC =4cm. Trên cạnh Ac lấy điểm M sao cho góc ABM = góc ACB (M € AC)
a , cm tam giác AMB đồng dạng tg ACD
b, tính AM
c, kẻ AH vuông góc BC , AK vg BM
Cm AB×AK=AM×AH
d, cm dtích tg AHB=S tg AKM