Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Cẩm Nhung
Xem chi tiết
Lê Mạnh Hùng
Xem chi tiết
Edogawa Conan
Xem chi tiết
Trần Mạnh
25 tháng 2 2021 lúc 21:42

https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813

Harry James Potter
Xem chi tiết
Hoàng Lê Bảo Ngọc
Xem chi tiết
Mr Lazy
10 tháng 8 2016 lúc 12:29

\(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\Rightarrow a+b+c=3\)

\(Q=\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}\)

Cần tìm \(\beta;\gamma\) sau cho \(\frac{11b^3-a^3}{ab+4b^2}\le\gamma b+\beta a\)

\(\Leftrightarrow\frac{11.\left(\frac{b}{a}\right)^3-1}{\frac{b}{a}+4\left(\frac{b}{a}\right)^2}\le\gamma\frac{b}{a}+\beta\)

\(\Leftrightarrow\frac{11t^3-1}{t+4t^2}\le\gamma t+\beta\text{ }\left(t=\frac{b}{a}\right)\)

Dự đoán Q max khi a = b = c nên t = 1;

Tới đây dùng pp hệ số bất định để tìm ra \(\gamma=3;\text{ }\beta=-1\)

Vậy ta cần chứng minh \(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\Leftrightarrow-\frac{\left(a+b\right)\left(a-b\right)^2}{ab+4b^2}\le0\)

DTD2006ok
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 23:06

Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó

Vũ Đình Đức
Xem chi tiết
Nguyễn Bảo Trân
Xem chi tiết
Võ Hoàng Dương
Xem chi tiết