Tìm (x,y) \(\in\) Z thỏa mãn \(x^2y^2-x^2-8y^2=2xy\)
Tìm x,y thuộc Z thỏa mãn
a) 5x+30=-3xy+9y^2
b) 5x+25=-3y+8y^2
c) x^3-x^2.y +3x-2y-5=0
d) x^2+2y^2+2xy+y-2=0
Tìm x,y \(\in\)Z thỏa mãn : \(2y^2x+x+y+1=x^2+2y^2\)+2xy
https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813
Tìm x,y,z thỏa mãn :x2+2y2+z2-2xy+x-4y-4z+5=0
Cho x,y,z là các số dương thỏa mãn x + 2y + 3z = 3
Tìm giá trị lớn nhất của \(Q=\frac{88y^3-x^3}{2xy+16y^2}+\frac{297z^3-8y^3}{6yz+36z^2}+\frac{11x^3-27z^3}{3xz+4x^2}\)
\(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\Rightarrow a+b+c=3\)
\(Q=\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}\)
Cần tìm \(\beta;\gamma\) sau cho \(\frac{11b^3-a^3}{ab+4b^2}\le\gamma b+\beta a\)
\(\Leftrightarrow\frac{11.\left(\frac{b}{a}\right)^3-1}{\frac{b}{a}+4\left(\frac{b}{a}\right)^2}\le\gamma\frac{b}{a}+\beta\)
\(\Leftrightarrow\frac{11t^3-1}{t+4t^2}\le\gamma t+\beta\text{ }\left(t=\frac{b}{a}\right)\)
Dự đoán Q max khi a = b = c nên t = 1;
Tới đây dùng pp hệ số bất định để tìm ra \(\gamma=3;\text{ }\beta=-1\)
Vậy ta cần chứng minh \(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\Leftrightarrow-\frac{\left(a+b\right)\left(a-b\right)^2}{ab+4b^2}\le0\)
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)
Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó
Cho x y thuộc Z thỏa mãn
`x^2`+ `2xy` + `7x` + `7y` + `2y^2` + `10` = `0`
tìm gtnn và gtln của S= 2x+2y+2023
Tìm x,y ϵ Z thỏa mãn: \(x^2y^2-x^2-8y^2=2xy\)
tìm các số x, y thỏa mãn x^2*y^2-x^2-8y^2=2xy