so sánh hai phân số sau : 16^2020 + 1 / 16^2021 + 1 và 16^2021 + 1 / 16^2022 + 1
So sánh các phân số sau:
a, \(\dfrac{-11}{-32}\) và \(\dfrac{\text{16}}{\text{49}}\)
b, \(\dfrac{\text{- 2020 }}{\text{-2021}}\) và \(\dfrac{\text{-2021}}{\text{2022}}\)
\(\dfrac{-11}{-32}>\dfrac{16}{49}\)
\(\dfrac{-2020}{-2021}>\dfrac{-2021}{2022}\)
So sánh hai phân số 2021/2022 và 2020/2021
\(\dfrac{2021}{2022}\) và \(\dfrac{2020}{2021}\)
\(\dfrac{2021}{2022}=1-\dfrac{1}{2022}\)
\(\dfrac{2020}{2021}=1-\dfrac{1}{2021}\)
\(\text{Vì }\)\(\dfrac{1}{2022}>\dfrac{1}{2021}=>1-\dfrac{1}{2022}>1-\dfrac{1}{2021}=>\dfrac{2021}{2022}>\dfrac{2020}{2021}\)
so sánh 2 phân số:
A=\(\dfrac{6^{2020}+1}{6^{2021}+1}\) với B=\(\dfrac{6^{2021}+1}{6^{2022}+1}\)
Lời giải:
$6A=\frac{6^{2021}+6}{6^{2021}+1}=1+\frac{5}{6^{2021}+1}>1+\frac{5}{6^{2022}+1}$
$=\frac{6^{2022}+6}{6^{2022}+1}=6.\frac{6^{2021}+1}{6^{2022}+1}=6B$
$\Rightarrow A>B$
Cho \(S=\frac{1}{16}+\frac{2}{16^2}+\frac{3}{16^3}+...+\frac{2020}{16^{2020}}\). So sánh: \(S^{2020}\) và \(S^{2021}\).
1 bài trong đề thi HSG lớp 9 nhằm giúp các bạn học sinh lớp 9 ôn lại kiến thức lớp 6
\(S^{2020}\)và\(S^{2021}\)?Thế này sai mất thui.
Vì \(2020< 2021\)nên\(S^{2020}< S^{2021}\).
The Angry sai rồi
Nên chú ý rằng với một số \(S>0\)và \(m,n\in N,m>n\)thì:
Nếu \(0< S< 1\)thì \(S^m< S^n\)
Nếu \(S\ge1\)thì \(S^m\ge S^n\)
Bạn chưa chỉ ra khoảng giá trị của \(S\)thì không thể kết luận được.
Cho 2 phân số, So sánh:
A=m^2020+1/m^2021-1
B=m^2021+1/m^2022+1
Ta có : \(A.m=\frac{m\left(m^{2020+1}\right)}{m^{2021}-1}=\frac{m^{2021}+m}{m^{2021}-1}=1+\frac{m-1}{m^{2021}+1}\)
Tương tự ,ta có : \(B.m=1+\frac{m-1}{m^{2022}+1}\)
//Đề thiếu điều kiện của m nên không giải tiếp được =))
so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
a) tìm x :\(\dfrac{2}{1.4}x+\dfrac{2}{4.7}x+\dfrac{2}{7.10}x+....+\dfrac{2}{31.344}x=10\)
b)so sánh hai phân số sau : A=\(\dfrac{6^{2020}+1}{6^{2021}+1}\)và B=\(\dfrac{6^{\text{2021}}+1}{\text{6}^{\text{2022}}+1}\)
ét o ét giúp với ạ
So sánh:
A = \(\dfrac{2^{2020}-1}{2^{2021}-1}\) và B = \(\dfrac{2^{2021}-1}{2^{2022}-1}\)
\(2.A=\frac{2^{2021}-2}{2^{2021}-1}=1-\frac{1}{2^{2021}-1}\)
\(2B=\frac{2^{2022}-2}{2^{2022}-1}=1-\frac{1}{2^{2022}-1}\)
dó \(\frac{1}{2^{2022}-1}< \frac{1}{2^{2021}-1}\Rightarrow1-\frac{1}{2^{2022}-1}>1-\frac{1}{2^{2021}-1}\Rightarrow A< B\)
HT