x^2 + 2xy = 100
Tìm x,y
100+x=100+100Tìm x
100 + x = 100 + 100
100 + x = 200
x = 200 - 100
x = 100
100+x=100+100
100+x=200
x=200-100
x=100
Vậy..
X2 = 20x -100
tìm x ạ
\(x^2=20x-100\)
\(\Leftrightarrow x^2-20x+100=0\)
\(\Leftrightarrow x-10=0\)
hay x=10
Kết quả của phép nhân \((x + y - 1)(x + y + 1)\) là:
A. \({x^2} - 2xy + {y^2} + 1\)
B. \({x^2} + 2xy + {y^2} - 1\)
C. \({x^2} - 2xy + {y^2} - 1\)
D. \({x^2} + 2xy + {y^2} + 1\)
\(\left(x+y-1\right)\left(x+y+1\right)=x^2+xy-x+xy+y^2-y+x+y-1\\ =x^2+\left(xy+xy\right)+\left(-x+x\right)+y^2+\left(-y+y\right)-1\\ =x^2+2xy+y^2-1\\ =>B\)
Thực hiện phép tính:
a/(x^2+y^2-2xy)+(x^2+y^2 +2xy)
b/(x^2+y^2-2xy) - (x^2+y^2+2xy)
a.
(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy
= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)
= 2x^2 + 2y^2
b.
(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy
= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)
= -4xy
Tính 1 cách hợp lí x/x^2+2xy+y^2 + 2y/x+y + y/x^2+2xy+y^2=?
\(\dfrac{x}{x^2+2xy+y^2}+\dfrac{2y}{x+y}+\dfrac{y}{x^2+2xy+y^2}\)
\(=\dfrac{x+y}{\left(x+y\right)^2}+\dfrac{2y}{x+y}\)
\(=\dfrac{1}{x+y}+\dfrac{2y}{x+y}=\dfrac{2y+1}{x+y}\)
Tìm x, y thuộc Z để:
a) xy + x - y = 2
b) x - 2xy + y = 0
c) x. (x - 2) - (2 - x)y - 2. (x - 2) = 3
d) (2x - y). (4x2 + 2xy + y2) + (2x + y). (4x2 - 2xy + y2) - 16x. (x2 - y) = 32
e) x2 - 2xy + 2y2 - 2x + 6y +5 = 0
g) x2 + 2xy + 7x + 7y + 2y2 = 0
Chọn câu sai: x^2 + y^2 bằng:
A.(x+y)^2 B.(x - y)^2 +2xy C.(x + y)^2 - 2xy D.y^2 + x^2
Uả bạn đang kiểm tra hay sao mà gấp thế?
Chọn đáp án đúng
\({ (x^{3}+3x^{2}y+3xy^{2}+y^{3}-z^{3}):(x+y-z) }\)
\(A. { x^{2}+y^{2}+z^{2}+2xy+xz+yz }\)
\(B. { x^{2}+y^{2}+z^{2}+2xy-xz-yz } \)
\(D. { x^{2}+y^{2}-z^{2}+2xy-xz-yz } \)
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
Chứng minh (x+y)(x+y)=x^2+2xy+y^2 b(x-y)(x-y)=x^2-2xy+y^2 c(x-z)(x+z)=x^2-z^2
\(\left(x+y\right)\left(x+y\right)=x^2+xy+xy+y^2=x^2+2xy+y^2\)
\(\left(x-y\right)\left(x-y\right)=x^2-xy-xy+y^2=x^2-2xy+y^2\)
\(\left(x-z\right)\left(x+z\right)=x^2+xz-xz-z^2=x^2-z^2\)
Cho xy/x^2+y^2=5/8 rút gọn p=
x^2-2xy+y^2/x^2+2xy+y^2
x 2 +y 2 xy = 8 5 ⇒x 2 +y 2 = 5 8xy \Rightarrow P=\frac{\frac{8xy}{5}-2xy}{\frac{8xy}{5}+2xy}=\frac{8xy-10xy}{8xy+10xy}=\frac{-2}{18}=-\frac{1}{9}⇒P= 5 8xy +2xy 5 8xy −2xy = 8xy+10xy 8xy−10xy = 18 −2 =− 9 1