\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
Chứng minh rằng
a) (x+y+z)2 = x2+y2+z2+2xy+2yz+2zx
b) (x+y+z)3 = x3+y3+z3+3*(x+y)*(y+z)*(z+x)
c) (x+y+z)*(x2+y2+z2-xy-yz-zx) = x3+y3+z3-3xyz
Thực hiện phép tính:
a) (x2+x+1)(x2+2)
b) (x-1)(x5+x4+x3+x2+x+1)
c) (x-y+z)(x2+xy+y2)
d) (x2-yz)(y2-xz)(z2-xy)
e) 4(x-1)(x+5)-(x+2)(x+5)-3(x-1)(x+2)
Chứng minh đẳng thức:
a) (x-y-z)2 = x2 + y2 + z2 - 2xy + 2yz - 2zx
b) (x+y-z)2 = x2 + y2 + z2 + 2xy - 2yz - 2zx
c) (x-y)(x3 + x2y + xy2 + y3 = x4 - y4
d) (x+y)(x4 - x3y + x2y2 - xy3 + y4) = x5 + y5
bài 2 : cho x,y,z >0 thỏa mãn
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>\dfrac{1}{\sqrt{xy}+}\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
1)Chứng minh đẳng thức sau:
X^3 + y^3 + z^3 = ( x+ y+ z) .(x^2+ y^2 + z^2 - xy- yz- zx)
2) Chứng minh:
43^2020 + 43^2021 chia hết cho 11
Nhanh lên!Cần gấp lắm rồi!
CMR
( x + y + z )2 = x2 + y2 +z2 +2xy +2yz + 2xz
CMR: x3+y3+z3-3xyz= (x+y+z)(x2+y2+z2- xy - yz - xz)
tinh
a)(x-y-z)(x-y)+(y-x-z)(z-x)+(z-x-y)(y-z)
b)3x^n-2(x^n+2-y^n+2)+y^n+2(3x^n-2-y^n-2)
c)(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
Chứng minh:
a. \(X^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
b.\(S=a+b+c\) thì
\(S\left(S-2b\right)\left(S-2c\right)+S\left(S-2c\right)\left(S-2a\right)+S\left(S-2a\right)\left(S-2b\right)=\left(S-2a\right)\left(S-2b\left(S-2c\right)+8abc\right)\)