Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thanh Phương
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 8:25

Xét khai triển:

\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)

Đạo hàm 2 vế:

\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)

\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)

Cho \(x=-1\) ta được:

\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)

\(\Rightarrow2n+1=2019\Rightarrow n=1009\)

Tâm Cao
Xem chi tiết
bach nhac lam
21 tháng 3 2021 lúc 21:56

Ta có : \(C^k_{2n+1}=C^{2n+1-k}_{2n+1}\)

\(\Rightarrow2VT=C^1_{2n+1}+C^2_{2n+1}+...+C^{2n}_{2n+1}=2^{21}-2\)

\(\Leftrightarrow2^{2n+1}-C^0_{2n+1}-C^{2n+1}_{2n+1}=2^{21}-2\)

\(\Leftrightarrow2n+1=21\Leftrightarrow n=10\)

Trần Thanh Phương
21 tháng 3 2021 lúc 22:00

\(\sum\limits^{2n+1}_{k=0}C^k_{2n+1}=\left(1+1\right)^{2n+1}=2^{2n+1}\)

Lại có \(C^0_{2n+1}+C^1_{2n+1}+...+C^n_{2n+1}=C^{2n+1}_{2n+1}+C^{2n}_{2n+1}+...+C^{n+1}_{2n+1}\)

\(\Rightarrow C^0_{2n+1}+C^1_{2n+1}+...C^n_{2n+1}=\dfrac{2^{2n+1}}{2}\)

\(\Leftrightarrow2^{20}-1=2^{2n}-C^0_{2n+1}\)

\(\Leftrightarrow2^{20}-1=2^{2n}-1\)

\(\Leftrightarrow2n=20\)

\(\Leftrightarrow n=10\)

Hải Títt
Xem chi tiết
hilluu :>
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 0:03

1:

2n^2+5n-1 chia hết cho 2n-1

=>2n^2-n+6n-3+2 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2}

mà n nguyên

nên n=1 hoặc n=0

2:

a: A=n(n+1)(n+2)

Vì n;n+1;n+2 là 3 số liên tiếp

nên A=n(n+1)(n+2) chia hết cho 3!=6

b: B=(2n-1)[(2n-1)^2-1]

=(2n-1)(2n-2)*2n

=4n(n-1)(2n-1)

Vì n;n-1 là hai số nguyên liên tiếp

nên n(n-1) chia hết cho 2

=>B chia hết cho 8

c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24

Anime
Xem chi tiết
soyeon_Tiểu bàng giải
9 tháng 7 2016 lúc 20:20

1/1x3 + 1/3x5 + 1/5x7 + ... + 1/(2n+1)x(2n+3) = n+1/2n+3

2/1x3 + 2/3x5 + 2/5x7 + ... + 2/(2n+1)x(2n+3) = 2n+2/2n+3

1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2n+1 - 1/2n+3 = 2n+2/2n+3

1 - 1/2n+3 = 2n+2/2n+3

Bn nào thông minh thế, ra bài này đố Tây lm đc, ai lm đc mk bái lm sư phụ lun, sửa đề đê

Ủng hộ mk nha ^_-

Nguyễn Hoàng Ngân
Xem chi tiết
Khánh ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2021 lúc 23:10

e: \(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-1;2;-3\right\}\)

Pham An
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 11 2021 lúc 18:18

Giả thiết tương đương:

\(C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}=2^{100}\) (thay \(1=C_{2n+1}^{2n+1}\))

Mặt khác:

\(C_{2n+1}^{2n+1}=C_{2n+1}^0\)

\(C_{2n+1}^{2n}=C_{2n+1}^1\)

....

\(C_{2n+1}^{n+1}=C_{2n+1}^n\)

Cộng vế:

\(\Rightarrow C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^n\)

\(\Rightarrow2\left(C_{2n+1}^{n+1}+...+C_{2n+1}^{2n+1}\right)=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^{2n+1}\)

\(\Rightarrow2.2^{100}=2^{2n+1}\) (đẳng thức cơ bản: \(\sum\limits^n_{k=0}C_n^k=2^n\))

\(\Leftrightarrow2^{101}=2^{2n+1}\)

\(\Rightarrow2n+1=101\)

\(\Rightarrow n=50\)

SHTQ trong khai triển: \(C_{50}^k.\left(x^{-3}\right)^k.\left(x^2\right)^{50-k}=C_{50}^kx^{100-5k}\)

\(100-5k=20\Rightarrow k=16\)

Hệ số: \(C_{50}^{16}\)