GPT: \(\sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\pi}{2}\)
GPT sau: \(4\sin\left(x+\dfrac{\pi}{3}\right)-2\sin\left(2x-\dfrac{\pi}{6}\right)=\sqrt{3}\cos x+\cos2x-2\sin x+2\)
\(2sinx+2\sqrt{3}cosx-\sqrt{3}sin2x+cos2x=\sqrt{3}cosx+cos2x-2sinx+2\)
\(\Leftrightarrow4sinx+\sqrt{3}cosx-2\sqrt{3}sinx.cosx-2=0\)
\(\Leftrightarrow-2sinx\left(\sqrt{3}cosx-2\right)+\sqrt{3}cosx-2=0\)
\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{3}cosx-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=\dfrac{2}{\sqrt{3}}>1\end{matrix}\right.\)
\(\Leftrightarrow...\)
GPT: \(\sin\left(5x+\dfrac{\pi}{6}\right)=\sin\left(x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+k2\pi\\5x+\dfrac{\pi}{6}=\pi-\left(x-\dfrac{\pi}{3}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-\dfrac{\pi}{2}+k2\pi\\6x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{8}+k\dfrac{\pi}{2}\\x=\dfrac{7\pi}{36}+k\dfrac{\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)
GPT: \(\sin\left(2x+\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\)
\(\sin\left(2x+\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\pi}{4}\right)=-\dfrac{\pi}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{4}=-\dfrac{\pi}{6}+k2\pi\\2x+\dfrac{\pi}{4}=\pi-\left(-\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{6}-\dfrac{\pi}{4}+k2\pi\\2x=\pi+\dfrac{\pi}{6}-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{5\pi}{12}+k2\pi\\2x=\dfrac{11\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5\pi}{24}+k\pi\\x=\dfrac{11\pi}{24}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
Rút gọn:
C= \(sin^2\dfrac{\pi}{3}+sin^2\dfrac{5\pi}{6}+sin^2\dfrac{\pi}{9}+sin^2\dfrac{11\pi}{18}+sin^2\dfrac{13\pi}{18}+sin^2\dfrac{2\pi}{9}\)
D=\(cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
Rút gọn biểu thức:
\(sin\left(x\right)+\left[sin\left(x+\dfrac{2\pi}{5}\right)-sin\left(x+\dfrac{\pi}{5}\right)\right]+\left[sin\left(x+\dfrac{4\pi}{5}\right)-sin\left(x+\dfrac{3\pi}{5}\right)\right]\)
\(=sin\left(x\right)+2cos\left(x+\dfrac{3\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)+2cos\left(x+\dfrac{7\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)\)
\(=sin\left(x\right)+2sin\left(\dfrac{\pi}{10}\right)\left[cos\left(x+\dfrac{3\pi}{10}\right)+cos\left(x+\dfrac{7\pi}{10}\right)\right]\)
\(=sin\left(x\right)+4sin\left(\dfrac{\pi}{10}\right)cos\left(\dfrac{\pi}{5}\right)cos\left(x+\dfrac{\pi}{2}\right)\)
\(=sin\left(x\right)+cos\left(x+\dfrac{\pi}{2}\right)\)
\(=sin\left(x\right)+cos\left(x\right)cos\left(\dfrac{\pi}{2}\right)-sin\left(x\right)sin\left(\dfrac{\pi}{2}\right)\)
\(=sin\left(x\right)-sin\left(x\right)\)
\(=0\)
GPT: \(\sin\left(x-\dfrac{\pi}{2}\right)=1\)
\(\sin\left(x-\dfrac{\pi}{2}\right)=1\Leftrightarrow x-\dfrac{\pi}{2}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\pi+k2\pi\left(k\in Z\right)\)
GPT: \(\dfrac{4\sin^2\dfrac{x}{2}-\sqrt{3}\cos2x-1-2\cos^2\left(x-\dfrac{3\pi}{4}\right)}{\sqrt{2\cos3x+1}}=0\)
Lời giải:ĐK: $\cos 3x>\frac{-1}{2}$
PT $\Rightarrow 4\sin ^2\frac{x}{2}-\sqrt{3}\cos 2x-1-2\cos ^2(x-\frac{3\pi}{4})=0$
$\Leftrightarrow 2(1-\cos x)-\sqrt{3}\cos 2x-2+[1-2\cos ^2(x-\frac{3\pi}{4})]=0$
$\Leftrightarrow -2\cos x-\sqrt{3}\cos 2x-cos (2x-\frac{3\pi}{2})=0$
$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\cos (2x-\frac{3\pi}{2})=0$
$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\sin 2x=0$
$\Leftrightarrow \cos x+\frac{\sqrt{3}}{2}\cos 2x+\frac{1}{2}\sin 2x=0$
$\Leftrightarrow \cos x-\cos (2x+\frac{5\pi}{6})=0
$\Leftrightarrow \cos x=\cos (2x+\frac{5\pi}{6})$
$\Rightarrow x+2k\pi =2x+\frac{5}{6}\pi$ hoặc $-x+2k\pi =2x+\frac{5}{6}\pi$
Vậy......
GPT: \(2\sin\left(2x+\dfrac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\2x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k2\pi\\2x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
`2sin(2x+\pi/4)=\sqrt{2}`
`<=>sin(2x+\pi/4)=\sqrt{2}/2`
`<=>` $\left[\begin{matrix} 2x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\ 2x+\dfrac{\pi}{4}=\dfrac{3\pi}{4}\end{matrix}\right.$ `(k in ZZ)`
`<=>` $\left[\begin{matrix} 2x=k2\pi\\ 2x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.$ `(k in ZZ)`
`<=>` $\left[\begin{matrix} x=k\pi\\ x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.$ `(k in ZZ)`
Chứng minh biểu thức sau không phụ thuộc vào x:
Q = \(sinx-sin\left(x+\dfrac{\pi}{5}\right)+sin\left(x+\dfrac{2\pi}{5}\right)-sin\left(x+\dfrac{3\pi}{5}\right)+sin\left(x+\dfrac{4\pi}{5}\right)\)
Ta có: \(\sin x+\sin\left(x+\frac45\pi\right)\)
\(=2\cdot\sin\left(\frac{x+x+\frac45\pi}{2}\right)\cdot cos\left(\frac{x+\frac45\pi-x}{2}\right)=2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac25\pi\right)\)
Ta có: \(\sin\left(x+\frac{\pi}{5}\right)+\sin\left(x+\frac35\pi\right)\)
\(=2\cdot\sin\left(\frac{x+\frac{\pi}{5}+x+\frac35\pi}{2}\right)\cdot cos\left(\frac{x+\frac35\pi-x-\frac{\pi}{5}}{2}\right)\)
\(=2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac{\pi}{5}\right)\)
Ta có: \(Q=\sin x-\sin\left(x+\frac{\pi}{5}\right)+\sin\left(x+\frac25\pi\right)-\sin\left(x+\frac35\pi\right)+\sin\left(x+\frac45\pi\right)\)
\(=2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac25\pi\right)-2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac{\pi}{5}\right)+\sin\left(x+\frac25\pi\right)\)
\(=\sin\left(x+\frac25\pi\right)\left\lbrack2\cdot cos\left(\frac25\pi\right)-2\cdot cos\left(\frac{\pi}{5}\right)+1\right\rbrack\)
\(=\sin\left(x+\frac25\pi\right)\cdot\left\lbrack2\cdot\left(2\cdot cos^2\left(\frac{\pi}{5}\right)-1\right)-2\cdot cos\left(\frac{\pi}{5}\right)+1\right\rbrack\)
\(=\sin\left(x+\frac25\pi\right)\cdot\left\lbrack4\cdot cos^2\left(\frac{\pi}{5}\right)-2\cdot cos\left(\frac{\pi}{5}\right)-1\right\rbrack\)
Dựng ΔABC cân tại A, \(\hat{BAC}=36^0\) ; BC=1
Gọi BD là phân giác của góc ABC(D∈AC)
ΔABC cân tại A
=>\(\hat{ABC}=\hat{ACB}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-36^0}{2}=72^0\)
BD là phân giác của góc ABC
=>\(\hat{ABD}=\hat{DBC}=\frac12\cdot\hat{ABC}=36^0\)
Xét ΔBDC có \(\hat{BDC}+\hat{BCD}+\hat{DBC}=180^0\)
=>\(\hat{BDC}=180^0-36^0-72^0=72^0\)
Xét ΔDAB có \(\hat{DAB}=\hat{DBA}\left(=36^0\right)\)
nên ΔDAB cân tại D
=>DA=DB
Xét ΔBDC có \(\hat{BDC}=\hat{BCD}=72^0\)
nên ΔBDC cân tại B
=>BD=BC=1
=>DA=DB=BC=1
Kẻ DH⊥AB tại H
ΔDAB cân tại D
mà DH là đường cao
nên H là trung điểm của AB
=>HA=HB=x
Xét ΔHAD vuông tại H có cos A\(=\frac{AH}{AD}=x\)
=>\(cosA=\frac{x}{AD}=x\)
DA+DC=AC
=>DC=AC-DA=AB-DA=2x-1
AC=AD+DC=1+2x-1=2x
=>AB=2x
Xét ΔBAC có BD là phân giác
nên \(\frac{DC}{DA}=\frac{BC}{BA}\)
=>\(\frac{2x-1}{1}=\frac{1}{2x}\)
=>2x(2x-1)=1
=>\(4x^2-2x-1=0\)
=>\(x^2-\frac12x-\frac14=0\)
=>\(x^2-2\cdot x\cdot\frac14+\frac{1}{16}-\frac{5}{16}=0\)
=>\(\left(x-\frac14\right)^2=\frac{5}{16}\)
=>\(x-\frac14=\frac{\sqrt5}{4}\)
=>\(x=\frac{\sqrt5+1}{4}\)
=>\(cos36=\frac{\sqrt5+1}{4}\)
=>\(cos\left(\frac{\pi}{5}\right)=\frac{\sqrt5+1}{4}\)
\(4\cdot cos^2\left(\frac{\pi}{5}\right)-2\cdot cos\left(\frac{\pi}{5}\right)-1\)
\(\)\(=4\cdot\left(\frac{\sqrt5+1}{4}\right)^2-2\cdot\frac{\sqrt5+1}{4}-1\)
\(=\frac{4\cdot\left(6+2\sqrt5\right)}{16}-\frac{\sqrt5+1}{2}-1=\frac{8\left(3+\sqrt5\right)}{16}-\frac{\sqrt5+1}{2}-1\)
\(=\frac{3+\sqrt5}{2}-\frac{\sqrt5+1}{2}-1=\frac{3+\sqrt5-\sqrt5-1}{2}-1=\frac22-1=0\)
=>Q=0
=>Q không phụ thuộc vào biến x