Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hải Lục Vũ
Xem chi tiết

Sửa đề: \(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac12\right)\)

ĐKXĐ: x>=0; x<>9

a: Ta có: \(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=-\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

Ta có: \(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac12\)

\(=\frac{2\left(\sqrt{x}-1\right)-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{2\left(\sqrt{x}-3\right)}\)

Ta có: \(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac12\right)\)

\(=-\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{2\left(\sqrt{x}-3\right)}\)

\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}=\frac{-6}{\sqrt{x}+3}\)

b: Để A nguyên thì -6⋮\(\sqrt{x}+3\)

=>\(\sqrt{x}+3\in\left\lbrace3;6\right\rbrace\)

=>\(\sqrt{x}\in\left\lbrace0;3\right\rbrace\)

=>x∈{0;9}

Kết hợp ĐKXĐ, ta được: x=0(nhận)

Mèo Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 22:24

Biểu thức gì vậy bạn?

Mèo Dương
15 tháng 10 2023 lúc 22:29

tìm các giá trị nguyên của x để biểu thức P=A.B  nhận giá trị nguyên

Ngân Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 8:49

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

 

 

Hoàng Phú Lợi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:55

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)

b: Để A>2 thì A-2>0

=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)

=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)

TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)

=>\(2< \sqrt{x}< \dfrac{5}{2}\)

=>4<x<25/4

c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1\right\}\)

=>\(x\in\left\{1;9\right\}\)

kết hợp ĐKXĐ, ta được: x=9

Linh Ngoc Nguyen
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:16

Lời giải:

ĐK: $x\geq 0; x\neq 4; x\neq 9$

a) 

\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$

Mà $\sqrt{x}-3\geq -3$ nên:

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$

$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.

 

Lizy
Xem chi tiết
Akai Haruma
3 tháng 1 2024 lúc 22:30

Lời giải:
\(\frac{2-3\sqrt{x}}{\sqrt{x}+3}=\frac{11-3(\sqrt{x}+3)}{\sqrt{x}+3}=\frac{11}{\sqrt{x}+3}-3\)

Để biểu thức đã cho nguyên thì $\frac{11}{\sqrt{x}+3}$ nguyên

Đặt $\frac{11}{\sqrt{x}+3}=t$ thì hiển nhiên $t>0$ do cả tử và mẫu đều dương.

Mà: $\sqrt{x}\geq 0\Rightarrow t=\frac{11}{\sqrt{x}+3}\leq \frac{11}{3}<4$

$\Rightarrow 0< t< 4$. Mà $t$ nguyên nên $t\in \left\{1; 2; 3\right\}$

$\sqrt{x}=\frac{11}{t}-3$. Để $x$ nguyên thì $t$ là ước của $11$

$\Rightarrow t=1$

$\sqrt{x}=\frac{11}{1}-3=8\Leftrightarrow x=64$

Ngưu Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 0:01

a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Anh Nguyễn
Xem chi tiết
Minh Hiếu
12 tháng 10 2021 lúc 20:04

\(A=\) \(\dfrac{x+2}{x-5}\)

\(=\dfrac{\left(x-5\right)+7}{x-5}\)

\(=1+\dfrac{7}{x-5}\)

để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5

⇒x-5∈\(\left(^+_-1,^+_-7\right)\)

Còn lại thì bạn tự tính nha

huy tạ
Xem chi tiết