Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hải Lục Vũ
Xem chi tiết
Mèo Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 22:24

Biểu thức gì vậy bạn?

Mèo Dương
15 tháng 10 2023 lúc 22:29

tìm các giá trị nguyên của x để biểu thức P=A.B  nhận giá trị nguyên

Ngân Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 8:49

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

 

 

Hoàng Phú Lợi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:55

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)

b: Để A>2 thì A-2>0

=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)

=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)

TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)

=>\(2< \sqrt{x}< \dfrac{5}{2}\)

=>4<x<25/4

c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1\right\}\)

=>\(x\in\left\{1;9\right\}\)

kết hợp ĐKXĐ, ta được: x=9

Linh Ngoc Nguyen
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:16

Lời giải:

ĐK: $x\geq 0; x\neq 4; x\neq 9$

a) 

\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$

Mà $\sqrt{x}-3\geq -3$ nên:

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$

$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.

 

Lizy
Xem chi tiết
Akai Haruma
3 tháng 1 lúc 22:30

Lời giải:
\(\frac{2-3\sqrt{x}}{\sqrt{x}+3}=\frac{11-3(\sqrt{x}+3)}{\sqrt{x}+3}=\frac{11}{\sqrt{x}+3}-3\)

Để biểu thức đã cho nguyên thì $\frac{11}{\sqrt{x}+3}$ nguyên

Đặt $\frac{11}{\sqrt{x}+3}=t$ thì hiển nhiên $t>0$ do cả tử và mẫu đều dương.

Mà: $\sqrt{x}\geq 0\Rightarrow t=\frac{11}{\sqrt{x}+3}\leq \frac{11}{3}<4$

$\Rightarrow 0< t< 4$. Mà $t$ nguyên nên $t\in \left\{1; 2; 3\right\}$

$\sqrt{x}=\frac{11}{t}-3$. Để $x$ nguyên thì $t$ là ước của $11$

$\Rightarrow t=1$

$\sqrt{x}=\frac{11}{1}-3=8\Leftrightarrow x=64$

Ngưu Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 0:01

a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Anh Nguyễn
Xem chi tiết
Minh Hiếu
12 tháng 10 2021 lúc 20:04

\(A=\) \(\dfrac{x+2}{x-5}\)

\(=\dfrac{\left(x-5\right)+7}{x-5}\)

\(=1+\dfrac{7}{x-5}\)

để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5

⇒x-5∈\(\left(^+_-1,^+_-7\right)\)

Còn lại thì bạn tự tính nha

huy tạ
Xem chi tiết