Đề ra: Tính nhanh
1/12+1/20+1/30+.............+1/9702
Tính nhanh
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=\dfrac{1}{1}\cdot\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{4}+\dfrac{1}{4}\cdot\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{1}{6}+\dfrac{1}{6}\cdot\dfrac{1}{7}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=\dfrac{1}{1}-\dfrac{1}{7}=\dfrac{7}{7}-\dfrac{1}{7}=\dfrac{6}{7}\)
Tính tổng
1/12 + 1/20 + 1/30 + ... + 1/9702
\(=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{98\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)
1/3.4 + 1/4.5 + ...+1/98.99
= 1/3-1/4+1/4-1/5+...+1/98-1/99
= 1/3-1/99= 32/99
Tính nhanh:
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
=1 phần 3*4+1 phần 4*5+1 phần 5*6+...+1 phần 98*99
=1 phần 3-1 phần 4+ 1 phần 4- 1 phần 5+...+1 phần 98-1 phần 99
=1 phần 3- 1 phần 99 =32 phần 99
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{33-1}{99}=\dfrac{32}{99}\)
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
= \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{98.99}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
= \(\dfrac{1}{3}-\dfrac{1}{99}\)
= \(\dfrac{33}{99}-\dfrac{1}{99}\)
= \(\dfrac{32}{99}\)
Tính T=1/2+1/6+1/12+1/20+1/30+....+1/9702+1/9900
T= 1 - 1/2 + 1/2 - 1/3 + ......+ 1/99 - 1/100
= 1 - 1/100
= 99/100
Tính t =1/2+1/6+1/12+1/20+1/30+...........+1/9702+1/9900
\(t=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(t=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(t=1-\frac{1}{100}=\frac{99}{100}\)
Vậy \(t=\frac{99}{100}\)
Tính T biết : 1/2+1/6+1/12+1/20+1/30+.........+1/9702+1/9900
tính T = 1/2 +1/6+1/12+1/20+1/30+...+1/9702+1/9900
T=
ta có : t = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/98.99 + 1/99.100
=> t = 1/1 - 1/2 + 1/2 - 1/3 + .... + 1/99 - 1/100
=> t = 1 - 1/100
=> t = 99/100
T=1/1x2+1/2x3+1/3x4+....................+1/98x99+1/99x100
T=1-1/2+1/2-1/3+..............+1/98-1/99+1/99-1/100
T=1-1/100
T=99/100
1/12 + 1/20 + 1/30 + ... +1/9702
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\\ =\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}\\ =\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\\ =\dfrac{1}{3}-\dfrac{1}{99}\\ =\dfrac{32}{99}\)
1/2+1/6+1/12+1/20+1/30+.......+1/9702+1/9990
bằng 99/100 nha bạn
thi rồi, đúng 99,9% đó