Chứng minh rằng: \(2009^{2008}+2011^{2010}\) chia hết cho 2010.
Chứng minh rằng: \(2009^{2008}+2011^{2010}\)chia hết cho 2010
From: exoplanet
To: Nguyễn Ngọc Phương Thảo
\(2009^{2008}+2011^{2010}=\left(2009^{2008}+1\right)+\left(2011^{2010}-1\right)\)
\(=\left(2009+1\right)\left(2009^{2007}+a\right)+\left(2011-1\right)\left(2011^{2009}-b\right)\)
chứng minh rằng : \(2009^{2008}+2011^{2010}\) chia hết cho 2010
Cho M=3^2012-3^2011+3^2010-3^2009+3^2008 \(M=3^{2012}-2^{2011}+3^{2010}-3^{2009}+3^{2008}\)
Chứng minh rằng M chia hết cho 10
chứng minh rằng : \(2009^{2008}+2011^{2010}\) chia hết cho 2010
Chứng minh rằng: \(2009^{2008}+2011^{2010}\)chia hết cho \(2010\)
Chứng minh rằng :
(2010\(^{ }\)^2011- 2010^2010) chia hết cho 2009
A = 20102011 - 20102010
A = 20102010 .( 2010 - 1)
A = 20102010.2009
2009 ⋮ 2009 ⇒ A = 20102010.2009 ⋮ 2009
Chứng minh rằng
M=20112007+20112008+20112009+20112010+20112011+20112012 chia hết cho 2012
Chứng minh rằng: \(2009^{2008}+2011^{2010}⋮2010\)
a) Chứng tỏ rằng: 1/41+1/42+1/43+...+1/80 > 7/12
b) So sánh: A=2008/2009+2009/2010+2010/2011 VÀ B=2008+2009+2010/2009+2010+2011
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{80}\)
\(=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+.....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+......+\frac{1}{80}\right)\)
\(>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\right)\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)