Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo  Linh
Xem chi tiết
Akai Haruma
17 tháng 12 2021 lúc 22:26

Lời giải:
Nếu $x+y+z=0$ thì:

$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$

$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$

$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$ 

(thỏa mãn đkđb)

Khi đó:

$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$

$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$

Nếu $x+y+z\neq 0$

Áp dụng TCDTSBN:

$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$

$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:

$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$

Quốc Huy
Xem chi tiết
Phạm Phú Hoàng Long
12 tháng 11 2017 lúc 8:04

thanghoa

Phạm Phú Hoàng Long
12 tháng 11 2017 lúc 8:04

đúng rùi đó

huỳnh ny
12 tháng 11 2017 lúc 9:56

Sai leu

Khánh Ngọc
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Thành Long
21 tháng 3 2022 lúc 0:29

undefined

Bùi Đức Huy Hoàng
21 tháng 3 2022 lúc 9:19

từ đề bài ta có bất đẳng thức cần chứng minh tương đương: 

\(3+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)

<=>\(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

ta có \(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{3}{4}+\dfrac{z+y}{4x}+\dfrac{x+z}{4y}+\dfrac{x+y}{4z}=\dfrac{3}{4}+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(đpcm\right)\)Dấu "=" xảy ra khi x=y=z=\(\dfrac{1}{3}\)

Nguyễn Việt Long
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
8 tháng 5 2021 lúc 10:19

* Có BĐT : \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ ( Chứng minh bằng xét hiệu )

Ta có BĐT : \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\Rightarrow\dfrac{x+y}{x^2+y^2}\le\dfrac{2\left(x+y\right)}{\left(x+y\right)^2}=\dfrac{2}{x+y}\)

Chứng minh tương tự khi đó :

\(P\le\dfrac{2}{x+y}+\dfrac{2}{y+z}+\dfrac{2}{z+x}\)

\(\Rightarrow2P\le\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}=2.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=4032\)

\(\Rightarrow P\le2016\)

Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 0:15

\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)

BĐT cần chứng minh trở thành:

\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)

Thật vậy, ta có:

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng AM-GM:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)

Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm

Thầy Tùng Dương
Xem chi tiết
MEOW*o( ̄┰ ̄*)ゞ
Xem chi tiết
Người Vô Danh
3 tháng 11 2021 lúc 22:07

\(\dfrac{x+y-2017z}{z}=\dfrac{y+z-2017x}{x}=\dfrac{z+x-2017y}{y}\)

<=> \(\dfrac{x+y}{z}-2017=\dfrac{z+y}{x}-2017=\dfrac{z+x}{y}-2017\)

<=> \(\dfrac{x+y}{z}=\dfrac{z+y}{x}=\dfrac{z+x}{y}\)

đặt x+y+z = t 

=> \(\dfrac{t-z}{z}=\dfrac{t-x}{x}=\dfrac{t-y}{y}< =>\dfrac{t}{z}-1=\dfrac{t}{x}-1=\dfrac{t}{y}-1\) \(< =>\dfrac{t}{z}=\dfrac{t}{y}=\dfrac{t}{x}\)

=> x=y=z 

ta lại có 

\(P=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{y}\right)\)

vì x=y=z  => P = \(\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Nguyen Thuy Linh
Xem chi tiết
Thành Vinh Lê
7 tháng 5 2018 lúc 22:18

nhân cả 2 vế với 2 rồi bunhia

Nguyen Thuy Linh
6 tháng 4 2018 lúc 21:14

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm