tính nhanh
a) 2020 x 2022 + 1022
2020 x 2022 + 1022
Tính
a) 11/12 x 9/19 - 22/24 x 6/19 + 11/12 x 16/19.
b) 2022 x 2021 - 2/ 2020 +2020 x 2022.
Cần gấp tick người nhanh và chính xác nhất!
a) 11/12 x 9/19 - 22/24 x 6/19 + 11/12 x 16/19.
= 11/12 x 9/19 - 11/12 x 6/19 + 11/12 x 16/19.
=11/12 x ( 9/19 -6/19 + 16/19)
=11/12x 1
=11/12
mình biết câu a/ thôi
nhìu số quá khó ko biết làm ;-;
\(4\sin^{2020}x+4\cos^{2020}x=8\left(sin^{2022}x+\cos^{2022}x\right)+5\cos2x\)
Giải pt
\(\Leftrightarrow4sin^{2020}x\left(1-2sin^2x\right)=4cos^{2020}x\left(2cos^2x-1\right)+5cos2x=0\)
\(\Leftrightarrow4sin^{2020}x.cos2x=4cos^{2020}x.cos2x+5cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\Rightarrow x=...\\4sin^{2020}x=4cos^{2020}x+5\left(1\right)\end{matrix}\right.\)
Xét (1), ta có \(\left\{{}\begin{matrix}4sin^{2020}x\le4\\4cos^{2020}x+5\ge5\end{matrix}\right.\)
\(\Rightarrow4sin^{2020}x< 4cos^{2020}x+5\) với mọi x
\(\Rightarrow\left(1\right)\) vô nghiệm
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
Tính nhanh: (2022 x 2021 – 2021 x 2020) x( 1 + \(\dfrac{1}{2}\) : \(1\dfrac{1}{2}\) - \(1\dfrac{1}{3}\) )
\(=2021\cdot2\cdot\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)=4042\cdot\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)=0\)
`a, A = 3020 xx 3110 - 5 = 3020 xx 3109 + 3020 - 5`
`= 3020 xx 3109 + 3015 = B`.
`b, B = (2022-2)(2022+2) = 2022^2-4 < 2022^2 = A.`
2021/2018 x 2022 ... ... ... 2019/2020 x 2020
không thực hiện phép tính , tổng nào sau đây chia hết cho 5
A. 30+2022 B. 2020+2000+2030 C.2020+2022 D.2020+2025+2023
Lý thuyết : Những số nào có chữ số tạn cùng là 0 hoặc 5 thì chia hết cho 5.
⇒ Đáp án B. 2020 + 2000 + 2030
tìm x y z thoả mãn đẳng thức 1/x2022+1/y2022+1/z2022=1/x2021+1/y2021+1/z2021=1/x2020+1/y2020+1/z2020
Cho a,b>0: \(a^{2019}+b^{2019}=a^{2020}+b^{2020}=a^{2021}+b^{2021}\)
Tính \(P=2022-\left(a+b-ab\right)^{2022}\)
\(a^{2019}+b^{2019}=a^{2020}+b^{2020}\\ \Leftrightarrow a^{2020}-a^{2019}=b^{2019}-b^{2020}=0\\ \Leftrightarrow a^{2019}\left(a-1\right)=b^{2019}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{1-b}{a-1}\left(1\right)\\ a^{2020}+b^{2020}=a^{2021}+b^{2021}\\ \Leftrightarrow a^{2021}-a^{2020}=b^{2020}-b^{2021}\\ \Leftrightarrow a^{2020}\left(a-1\right)=b^{2020}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2020}}{b^{2020}}=\dfrac{1-b}{a-1}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{a^{2020}}{b^{2020}}\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\\ \Leftrightarrow2a^{2019}=2a^{2020}\\ \Leftrightarrow a=1=b\\ \Leftrightarrow P=2022-\left(1+1-1\right)^{2022}=2021\)