Tìm GTNN của P= 3x2-4x+2
Bài 1: tìm GTLN hoặc GTNN của
a, N=-1-x-x2
b,B=3x2+4x-13
a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)
\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)
\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)
a: Ta có: \(N=-x^2-x-1\)
\(=-\left(x^2+x+1\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: ta có: \(B=3x^2+4x-13\)
\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)
\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)
Tìm GTNN (min) của T = 9 x . 3 x 2 - 2 x
A. 9
B. 3
C. 1
D. 1 27
Tìm bậc của mỗi đa thức sau
a) f (x) = 3x2 + 2x3 - 6x - 2
b) g(x) = 5x2 + 9 - 2x3 - 3x2 - 4x + 2x3 - 2
f (x) = 3x2 + 2x3 - 6x - 2
bậc của đa thức là: 3
g(x) = 5x2 + 9 - 2x3 - 3x2 - 4x + 2x3 - 2
g(x) = ( 5x2 - 3x2 ) + ( 9 -2) + ( - 2x3 + 2x3 ) - 4x
g(x) = 2x2 + 7 - 4x
bậc của đa thức là : 2
Tìm tập nghiệm S của phương trình 3 x 2 - 2 x = 4 x - 2 .
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Tìm GTNN của biểu thức:
M= (x4 + 3x3 + 3x2 - 3x - 4):( x2 - 1)
Tìm hệ số tự do của hiệu f(x) - 2.g(x) với
f ( x ) = 5 x 4 + 4 x 3 - 3 x 2 + 2 x - 1 ; g ( x ) = - x 4 + 2 x 3 - 3 x 2 + 4 x + 5
A. 7
B. 11
C. -11
D. 4
- Ta có:
Hệ số cần tìm là -11
Chọn đáp án C
Tìm hệ số tự do của hiệu f(x) - 2.g(x) với
f ( x ) = 5 x 4 + 4 x 3 - 3 x 2 + 2 x - 1 ; g ( x ) = - x 4 + 2 x 3 - 3 x 2 + 4 x + 5
A. 7
B. 11
C. -11
D. 4
+) Ta có
2 g ( x ) = 2 − x 4 + 2 x 3 − 3 x 2 + 4 x + 5 = − 2 x 4 + 4 x 3 − 6 x 2 + 8 x + 10 Ta có f ( x ) − 2 ⋅ g ( x ) = 5 x 4 + 4 x 3 − 3 x 2 + 2 x − 1 − − 2 x 4 + 4 x 3 − 6 x 2 + 8 x + 10 = 5 x 4 + 4 x 3 − 3 x 2 + 2 x − 1 + 2 x 4 − 4 x 3 + 6 x 2 − 8 x − 10 = 5 x 4 + 2 x 4 + 4 x 3 − 4 x 3 + − 3 x 2 + 6 x 2 + ( 2 x − 8 x ) − 1 − 1 = 7 x 4 + 3 x 2 − 6 x − 11
Hệ số cần tìm là -11
Chọn đáp án C
tìm GTNN của 4x^2-3x+1/4x+2015
GTNN:
A= x2+2x+5
B= x2_x+1
C= 5x2+5x+1
D= 3x2+4x+2
E= 1/2x2+x_1
F= 1/9x2+3x+2
\(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x+1\right)^2+4\ge4\)
Kl: MinA = 4
\(B=x^2-x+1=\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
kl:.......
\(C=5x^2+5x+1=5\left(x^2+2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)+1-\dfrac{5}{4}=5\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
kl:.......
\(D=3x^2+4x+2=3\left(x^2+2\cdot\dfrac{2}{3}x+\dfrac{4}{9}\right)+2-\dfrac{4}{3}=3\left(x+\dfrac{2}{3}\right)^2+\dfrac{2}{3}\ge\dfrac{2}{3}\)
kl:......
\(E=\dfrac{1}{2}\cdot x^2+x-1=\dfrac{1}{2}\left(x^2+2x+1\right)-1-\dfrac{1}{2}=\dfrac{1}{2}\left(x+1\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}\)
kl:............
\(F=\dfrac{1}{9}x^2+3x+2=\dfrac{1}{3}\left(x^2+2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)+2-\dfrac{1}{12}=\dfrac{1}{3}\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{12}\ge\dfrac{23}{12}\)
kl:..........