Tính tổng 1 .2 + 2.3 + 3.4 +4.5+.............+49 . 50
tính tổng A=1/2.3+1/3.4+1/4.5+...1/25.26
\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{25\cdot26}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{26}\)
\(\Rightarrow A=\frac{12}{26}=\frac{6}{13}\)
Q = 1+ 2/2.3 + 2/ 3.4 + 2/4.5 +... + 2/50/51
\(Q=1+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{50\cdot51}\)
\(Q=1+2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{50\cdot51}\right)\)
\(Q=1+2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(Q=1+2\cdot\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(Q=1+\frac{49}{51}\)
\(Q=\frac{100}{51}\)
Tính tổng
A=1/1.2+1/2.3+1/3.4+..........+1/49+1/50
AI LÀM NHANH NHẤT MÌNH SẼ TICK
1 . Tính : 20 ^2 + 22^2 + 24^2 + ...... + 48 ^2 + 50^2
2 . Cho N thuộc N * . Tính tổng
n^2 + ( n +2 ) ^2 + ( n + 4 )^2 + ......... + n +100 ^ 2
3 . Tính : 1.2 + 2.3 + 3.4 + 4.5 + ......... + 999.1000
Tính tổng:
\(M=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}\)
\(M=\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(M=1-\dfrac{1}{7}\)
\(M=\dfrac{6}{7}\)
tham khảo
https://hoc24.vn/cau-hoi/123134145156167.5003535458609#:~:text=l%C3%BAc%2021%3A02-,1,14,-12.3%2B13.4%2B14.5
vào đi
refer
https://hoc24.vn/cau-hoi/123134145156167.5003535458609#:~:text=l%C3%BAc%2021%3A02-,1,14,-12.3%2B13.4%2B14.5
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
Tính tổng:
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
Tính tổng 1/2.3 - 2/3.4 + 3/4.5 +....+99/100.101 - 100/101.102
giúp mình
Tính tổng: S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.
`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`
`3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`
`3S = 1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`
`3S = 99.100.101`
`S = 33.100.101`
`S = 333300`
3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100
=99.100.101
S=33.100.101
=333300