Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khong can biet
Xem chi tiết
Đặng Trọng Tuyến
Xem chi tiết
Trần Công Ninh
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết
Bùi Thị Hải Châu
24 tháng 1 2017 lúc 7:14

???lolangnhonhung

Trần Thiên Kim
29 tháng 1 2017 lúc 17:04

P.An hở

Trịnh Trân Trân
2 tháng 2 2017 lúc 15:39

Hay :) :) :)

Bui cong minh
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Hưng Tạ Việt
Xem chi tiết
Steolla
2 tháng 9 2017 lúc 12:16

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Lưu Thị Thảo Ly
Xem chi tiết
Hung nguyen
21 tháng 1 2017 lúc 5:51

x2 + y2 + z2 - xy - 3y - 2z + 4 = 0

\(\Leftrightarrow\)(x2 - xy +\(\frac{y^2}{4}\)) + (\(\frac{3y^2}{4}\) - 3y + 3) + (z2 - 2z + 1) = 0

\(\Leftrightarrow\)(x -\(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0

\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)

Phi Yến Trần Phan
Xem chi tiết
Tippy Ham Học
30 tháng 12 2016 lúc 20:39

mk k bt lm. Mk ms hk lp 8...

Akai Haruma
23 tháng 1 2017 lúc 15:59

Lời giải:

Nhân $4$ vào cả hai vế, phương trình trở thành:

\(4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)

\(\Leftrightarrow (2x-y)^2+3(y-2)^2+(2z-2)^2=0\)

\((2x-y)^2, (y-2)^2,(2z-2)^2\geq 0\forall x,y,z\in\mathbb{Z}\) nên

\((2x-y)^2+3(y-2)^2+(2z-2)^2\geq 0\)

Dấu $=$ xảy ra khi \(\left\{\begin{matrix} 2x-y=0\\ y-2=0\\ 2z-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\\ z=1\end{matrix}\right.\)

Vậy \((x,y,z)=(1,2,1)\) là nghiệm của HPT

Mạch Trần Quang Nhật
1 tháng 1 2019 lúc 0:18

Ta có \(x^2+y^2+z^2-xy-3y-2z+4=0\)

Nhân cả 2 vế với 4

\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+12\right)+\left(4z^2-8z+4\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2+\left(2z-2\right)^2=0\left(1\right)\)

\(\left(2x-y\right)^2\ge0;\) \(3\left(y-2\right)^2\ge0;\) \(\left(2z-2\right)^2\ge0\)

Để xảy ra (1) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\2z-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)

Vậy \(x^2+y^2+z^2-xy-3y-2z+4=0\) tại x = 1; y = 2; z = 1