Câu 3 :
a. x - 72 = 8
b. 2 . 3x = 162
c. 3x + 3x + 2 = 810
A(x)= 2x^3-3x^2+3x+8
B(x)= 3x^3+2x^3-5x+1
Tính A(x)-B(x)
\(A\left(x\right)-B\left(x\right)=\left(2x^3-3x^2+3x+8\right)-\left(3x^3+2x^3-5x+1\right)\\ =2x^3-3x^2+3x+8-3x^3-2x^3+5x-1\\ =\left(2x^3-3x^3+2x^3\right)+\left(-3x^2\right)+\left(3x+5x\right)+\left(8-1\right)\\ =x^3-3x^2+8x+7\)
Bài 1 : Giải phương trình :
a)3x – 7 = 8
b) 5 + 2x = 3 (x-5)
c) 3x - 4/2 = 4x + 1/3
a: 3x-7=8
=>3x=15
hay x=2
b: =>2x+5=3x-15
=>-x=-20
hay x=20
c: =>3(3x-4)=2(4x+1)
=>9x-12=8x+2
=>x=14
a) 3x-7=8
3x=15
x=3
Vậy..
b) 5+2x=3(x-5)
2x-3x=-5-15
-x=-20
x=20
Vậy...
c) 3x -4/2=4x+1/3
3x-4x=2+1/3
-x=7/3
x=-7/3
Vậy...
Câu 10: Giá trị của biểu thức P = (3x – 1)(2x + 3) – (x – 5)(6x – 1) – 38x là *
A. P = -8
B. P = 8
C. P = 2
D. P = -2
Bài1:Rút gọn
a,(4x-5)(3x+2)-(7-3x)(x+2)
b,(-2x+1)(x-5)-3(x-2)(x+1)
c,(x^2-7)(x-5)+(3x^2+5)(2x-4)
d,(x^2+3x-2)(x+4)-4x(x-5)
Bài2:Tìm xbiết
a,(x-4)(x+3)-(x+1)(x-5)=8
b,(3x-2)(x+1)-3x(x+7)=13
c,(x+5)(x-5)-x(x+2)=9
d,(x-1)(x^2+x+1)-x(x^2-3)=1
2:
a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8
=>x^2-x-12-x^2+4x+5=8
=>3x-7=8
=>3x=15
=>x=5
b: =>3x^2+3x-2x-2-3x^2-21x=13
=>-20x=15
=>x=-3/4
c: =>x^2-25-x^2-2x=9
=>-2x=25+9=34
=>x=-17
d: =>x^3-1-x^3+3x=1
=>3x-1=1
=>3x=2
=>x=2/3
giúp mình vs:
a) (2x-1)^10=49^5
b)3^x+2+3x=810
a) \(\left(2x-1\right)^{10}=49^5\Leftrightarrow\left(2x-1\right)^{10}=7^{10}\Leftrightarrow\orbr{\begin{cases}2x-1=7\Rightarrow x=4\\2x-1=-7\Rightarrow x=-3\end{cases}}\)
PT có 2 nghiệm: x = -3 và x = 4.
b) \(3^x+2+3x=810\Leftrightarrow3^x+3x=808\)(2)
x = 0 không phải là nghiệm của (2)
VT(2) chia hết cho 3 với mọi x khác 0; => PT vô nghiệm
tìm x, biết :
a) 27x3 -54x2 +36x=8
b) (x+3) (x2 -3x +5)= x2 +3x
a: Ta có: \(27x^3-54x^2+36x=8\)
\(\Leftrightarrow27x^3-54x^2+36x-8=0\)
\(\Leftrightarrow\left(3x-2\right)^3=0\)
\(\Leftrightarrow3x-2=0\)
hay \(x=\dfrac{2}{3}\)
b: Ta có: \(\left(x+3\right)\cdot\left(x^2-3x+5\right)=x^2+3x\)
\(\Leftrightarrow\left(x+3\right)\cdot\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x=-3\)
Giải pt:
a) | 5x | = 3x + 8
b) | -4x | = -2x + 11
c) | 3x - 1 | = 4x + 1
d) | 3 - 2x | = 3x - 7
e) 9 - | -5x | + 2x = 0
f) ( x + 1)² + | x + 10 | - x² - 12 = 0
g) | 4 - x | + x² - (5 + x)x = 0
h) | x - 1 | = | 2x - 3|
i) | x| + | x + 2 | = 4
k) | 2x + 1 | - | 5x - 2 | = 3
l) 2 | x | - | x + 3 | - 1 = 0
a.
\(\left|5x\right|=3x+8\Leftrightarrow\left[{}\begin{matrix}-5x=3x+8\\5x=3x+8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
b.
\(\left|-4x\right|=-2x+11\Leftrightarrow\left[{}\begin{matrix}-4x=-2x+11\\4x=-2x+11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=\dfrac{11}{6}\end{matrix}\right.\)
c.
\(\left|3x-1\right|=4x+1\Leftrightarrow\left[{}\begin{matrix}-3x+1=4x+1\\3x-1=4x+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
d.
\(\left|3-2x\right|=3x-7\Leftrightarrow\left[{}\begin{matrix}-3+2x=3x-7\\3-2x=3x-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
e.
\(9-\left|-5x\right|+2x=0\Leftrightarrow\left[{}\begin{matrix}9-5x+2x=0\\9+5x+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{9}{7}\end{matrix}\right.\)
f.
\(\left(x+1\right)^2+\left|x+10\right|-x^2-12=0\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1-x-10-x^2-12=0\\x^2+2x+1+x+10-x^2-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=21\\x=\dfrac{1}{3}\end{matrix}\right.\)
3x+2 - 3x = 72
24-x = 72
\(3^{x+2}-3^x=72\)
\(\Rightarrow3^x\cdot\left(3^2-1\right)=72\)
\(\Rightarrow3^x\cdot\left(9-1\right)=72\)
\(\Rightarrow3^x\cdot8=72\)
\(\Rightarrow3^x=\dfrac{72}{8}\)
\(\Rightarrow3^x=9\)
\(\Rightarrow3^x=3^2\)
\(\Rightarrow x=2\)
_____
Xem lại đề
Giải các PT
a,:\(x^4-2x^3-x^2-2x+1=0\)
b,\(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c,\(x^2+\sqrt{x+72}=72\)
a) Ta có : x=0 không là nghiệm của phương trình. Chia cả hai vế của phương trình cho \(^{x^2}\) ta có:
\(x^2-2x-1-\frac{2}{x}+\frac{1}{x^2}=0\) \(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)-1=0\) (1)
Đặt \(x+\frac{1}{x}=t\) \(\left(t>2\right)\) hoăc \(\left(t
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Câu 2:
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x^2-2.x.3+3^2\right)=2x\left(x-3\right)^2\)