Phân tích đa thức thành nhân tử:
xy(x+y) + yz(y+z) + xz(x+z)+2xyz
phân tích đa thức thành nhân tử : xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử:
xy(x+y)+yz(y+z)+zx(z+x)+3xyz.
Đề sai r bạn phải là xy(x+y)+yz(y+z)+zx(z+x)+2xyz chứ
\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz\)
\(=xy\left(x+y\right)+xyz+yz\left(y+z\right)+xyz+zx\left(z+x\right)+xyz\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+zx\left(x+y+z\right)\)
\(=\left(xy+yz+zx\right)\left(x+y+z\right)\)
Phân tích đa thức thành nhân tử xy(x+y) + yz(y+z) + xz(x+z) + 2xyz
nhu the nay:
( xy( x + y )+ xyz )+( yz( y + z )+ xyz )+( xz( a +c )+ xyz)
= xy( x+y+z )+ yz( x + y + z )+ xz( x + y + z )
= ( x + y + z)( xy + yz +zx )
xong rui do dung thi ****.
phân tích đa thức sau thành nhân tử :
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích thành nhân tử:xy(x-y)-xz(x+y)+yz(2x-y+z)
Phân tích đa thức thành nhân tử
a) 8x^3+4x^2-y^3-y^2
b) xy(x+y) +yz(y+z)+xz(x+z)+2xyz
Phân tích đa thức thành nhân tử
1) 4x^2-7x-2
2)4x^2+5x-6
3)5x^2-18x-8
4)xy(x+y)-yz(y+z)+xz(x-z)
5) xy(x+y)+yz+xz(x+z)+2xyz
1) \(4x^2-7x-2=4x^2-8x+x-2=\left(4x^2-8x\right)+\left(x-2\right)\)
\(=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)
2) \(4x^2+5x-6=4x^2+8x-3x-6=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(4x-3\right)\)
3) \(5x^2-18x-8=5x^2-20x+2x-8=\left(5x^2-20x\right)+\left(2x-8\right)\)
\(=5x\left(x-4\right)+2\left(x-4\right)=\left(x-4\right)\left(5x+2\right)\)
4) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
\(=xy\left(x+y\right)-y^2z-yz^2+x^2z-xz^2\)
\(=xy\left(x+y\right)+\left(x^2z-y^2z\right)-\left(yz^2+xz^2\right)\)
\(=xy\left(x+y\right)+z\left(x^2-y^2\right)-z^2.\left(x+y\right)\)
\(=xy\left(x+y\right)+z\left(x-y\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=xy\left(x+y\right)+\left(zx-zy\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+xz-yz-z^2\right)=\left(x+y\right).\left[x\left(y+z\right)-z\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x-z\right)\)
1) 4x2 - 7x - 2 = 4x2 - 8x + x - 2 = 4x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 4x + 1 )
2) 4x2 + 5x - 6 = 4x2 - 8x + 3x - 6 = 4x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 4x + 3 )
3) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )
4) xy( x + y ) - yz( y + z ) + xz( x - z )
= x2y + xy2 - y2z - yz2 + xz( x - z )
= ( x2y - yz2 ) + ( xy2 - y2z ) + xz( x - z )
= y( x2 - z2 ) + y2( x - z ) + xz( x - z )
= y( x - z )( x + z ) + y2( x - z ) + xz( x - z )
= ( x - z )[ y( x + z ) + y2 + xz ]
= ( x - z )( xy + yz + y2 + xz )
= ( x - z )[ ( xy + y2 ) + ( xz + yz ) ]
= ( x - z )[ y( x + y ) + z( x + y ) ]
= ( x - z )( x + y )( y + z )
5) xy( x + y ) + yz + xz( x + z ) + 2xyz ( đề có thiếu không vậy .-. )
\(4x^2-7x-2=\left(4x^2-8x\right)+\left(x-2\right)=4x\left(x-2\right)+\left(x-2\right)=\left(4x-1\right)\left(x-2\right)\)
\(=4x^2+8x-3x-6=4x\left(x+2\right)-3\left(x+2\right)=\left(4x-3\right)\left(x+2\right)\)
\(=5x^2-18x-8=5x^2-20x+2x-8=5x\left(x-4\right)+2\left(x-4\right)=\left(5x+2\right)\left(x-4\right)\)
\(5=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Phân tích đa thức thành nhân tử:
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử:
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
\(\Leftrightarrow xy\left(x+y\right)+xyz+yz\left(y+z\right)+xyz+xz\left(z+x\right)\)
\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow\left(x+z\right)\left(y\left(z+x\right)+zx\right)\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)\)
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(=xy.x+xy.y+yz.y+yz.z+xz.x+xz.z+2xyz\)
\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)