Thu gọn đa thức, tìm bậc của đa thức.
C= 5xy – 3,5y2 - 2 xy + 1,3 xy + 3x -2y;
Cho đa thức:
A=5xy*2+xy-xy*2-1/3x*2y+2xy+x*2y+xy+6
a)Thu gọn A và xác định bậc của A
b)Tìm đa thức B sao cho A+B=0
c)Tìm đa thức C sao cho A+C=2x+1
NHANH LÊN NHA AI NHANH MK TICK HẠN CHÓT LÀ VÀO THỨ 5 TUẦN NÀY NHA
Cho đa thức:
\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)
a,Thu gọn đa thức và xác định bậc của đa thức kết quả.
b, Tìm đa thức b sao cho A+B=0
c, Tìm đa thức C sao cho A+C=-2XY+1
\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)
\(A=\left(5xy^2-xy^2\right)+\left(xy+2xy+xy\right)+\left(-\frac{1}{3}x^2y+x^2y\right)+6\)
\(A=4xy^2+4xy+\frac{2}{3}x^2y+6\)
b) để A+B=0 => B là số đối của A
\(\Rightarrow B=-4xy^2-4xy-\frac{2}{3}x^2y-6\)
c) Ta có \(A+C=-2xy+1\Leftrightarrow4xy^2+4xy+\frac{2}{3}x^2y+6+C=-2xy+1\)
\(\Leftrightarrow C=-2xy+1-4xy^2-4xy-\frac{2}{3}x^2y-6\)
\(\Leftrightarrow C=\left(-2xy-4xy\right)+\left(1-6\right)-4xy^2-\frac{2}{3}x^2y\)
\(\Leftrightarrow C=-6xy-5-4xy^2-\frac{2}{3}x^2y\)
Thu gọn đa thức sau
Q=x^2 + 2xy - 3x^3 + 2y^3+3x^3-y^3
P=1/3x^y+ xy^2-xy+1/2xy^2-5xy-1/3x^2y
\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)
\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)
1 thu gọn và Tìm bậc của các đa thức sau rồi Tính giá trị của đa thức tại x = -1,y=2 P=4x²y²-3xy³+5x²y²-5xy³--xy+x-1 Q=-4x²y²-xy+4xy³+2xy-6x³y-4x³y
Ta có:
\(P=4x^2y^2-3xy^3+5x^2y^2-5xy^3-xy+x-1\)
\(P=\left(4x^2y^2+5x^2y^2\right)-\left(3xy^3+5xy^3\right)-xy+x-1\)
\(P=9x^2y^2-8xy^3-xy+x-1\)
Bậc của đa thức P là: \(2+2=4\)
Thay x=-1 và y=2 vào P ta có:
\(P=9\cdot\left(-1\right)^2\cdot2^2-8\cdot-1\cdot2^3-\left(-1\right)\cdot2+\left(-1\right)-1=100\)
\(Q=-4x^2y^2-xy+4xy^3+2xy-6x^3y-4x^3y\)
\(Q=-4x^2y^2-\left(xy-2xy\right)+4xy^3-\left(6x^3y+4x^3y\right)\)
\(Q=-4x^2y^2+xy+4xy^3-10x^3y\)
Bậc của đa thức Q là: \(2+2=4\)
Thay x=-1 và y=2 vào Q ta có:
\(Q=-4\cdot\left(-1\right)^2\cdot2^2+\left(-1\right)\cdot2+4\cdot-1\cdot2^3-10\cdot\left(-1\right)^3\cdot2=-30\)
Thu gọn rồi tìm bậc của đa thức thu gọn
x^5 - 3 xy^3 - 6xy^2 +xy^3 + 3x^5y
\(x^5-3xy^3-6xy^2+xy^3+3x^5y=x^5-\left(3xy^3-xy^3\right)-6xy^2+3x^5y=x^5-2xy^3-6xy^2+3x^5y\)
Bậc:6
x5−3xy3−6xy2+xy3+3x5y=x5−(3xy3−xy3)−6xy2+3x5y=x5−2xy3−6xy2+3x5yx5−3xy3−6xy2+xy3+3x5y=x5−(3xy3−xy3)−6xy2+3x5y=x5−2xy3−6xy2+3x5y
Bậc:6
cho đa thức A = 5xy2 + xy - xy - 1/3x2y + 2xy + x2y + xy + 6
a) Thu gọn rồi xác định bậc của đa thức kết quả.
b) Tìm đa thức B sao cho A + B = 0
c) Tìm đa thức C sao cho A + C = -2xy + 1.
a. A = \(5xy^2+xy-xy-\dfrac{1}{3}x^2y+2xy+x^2y+xy+6\)
=> A = \(5xy^2-\dfrac{1}{3}x^2y+x^2y+xy-xy+xy+2xy+6\)
=> A = \(5xy^2-\dfrac{2}{3}x^2y+3xy+6\)
=> Bậc của đa thức A là : 3
Thu gọn đa thức, tìm bậc và tính giá trị đa thức tại x = −1; y =1:
B=\(\dfrac{3}{4}XY^2-\dfrac{1}{3}X^2Y-\dfrac{5}{6}XY^2+2X^2Y\)
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)
Thu gọn và tìm bậc của mỗi đa thức sau:
a) \(A = x - 2y + xy - 3x + {y^2}\)
b) \(B = xyz - {x^2}y + xz - \dfrac{1}{2}xyz + \dfrac{1}{2}xz\)
`A = x - 2y + xy - 3x + y^2`
Bậc: `2`.
`B = (1-1/2)xyz - x^2y + (1+1/2)xz`
`= 1/2xyz - x^2y + 3/2xz`
Bậc: `3`
cho đa thức p= 1/3x^2y+xy^2-xy+1/2xy^2-5xy-1/3x^2y tính giá trị của đa thức p khi x=2 và y=1
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)
Thay x = 2 ; y = 1 ta được
\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)