Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Vu
Xem chi tiết
Xyz OLM
1 tháng 1 2022 lúc 10:27

x3 + y3 + 1 = 6xy

<=> (x + y)3 - 3xy(x + y) + 1 = 6xy

<=> (x + y)3 + 8 - 3xy(x + y + 2) = 7

<=> (x + y + 2)(x2 - xy + y2 + 2x + 2y + 4) = 7

Đến đây bạn tự giải tiếp

Khoa Nguyễn Tú
13 tháng 10 2024 lúc 10:06

câu cuối là -2x-2y mà?

 

Dung Vu
Xem chi tiết
cherry moon
Xem chi tiết
Nyatmax
23 tháng 10 2019 lúc 18:18

PT

\(\Leftrightarrow20y^2-150=3x\left(2y-5\right)\)

\(\Leftrightarrow3x=\frac{20y^2-150}{2y-5}\)

De \(x\in Z\Rightarrow\frac{20y^2-150}{2y-5}\in Z\)

Dat \(M=\frac{20y^2-150}{2y-5}=5\left(2y+5\right)-\frac{25}{2y-5}\)

De \(3x=M=10y+25-\frac{25}{2y-5}\in Z\Rightarrow\frac{25}{2y-5}\in Z\Rightarrow2y-5\in\left\{-5;-1;1;5\right\}\)

Ta tim duoc

\(y_1=0;y_2=2;y_3=3;y_4=5\)

\(\Rightarrow x_1=x_3=30;x_2=70;x_4=70\)

Khách vãng lai đã xóa
Quỳnh Anh Đỗ Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2022 lúc 19:53

Bài 8:

a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)

=>-3x-12x+7=0

=>-15x+7=0

=>-15x=-7

hay x=7/15

b: Thay x=1 vào pt, ta được:

\(a^2-4-12+7=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)

hay \(a\in\left\{3;-3\right\}\)

c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)

Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0

hay \(a\notin\left\{4;-4\right\}\)

hà minh
Xem chi tiết
Nguyễn Như Lan
14 tháng 3 2022 lúc 9:31

Ta có:

     (2 - 3x)(x + 8) = (3x - 2)(3 - 5x)

⇔ (2 - 3x)(x + 8) - (3x - 2)(3 - 5x) = 0

⇔ (2 - 3x)(x + 8) + (2 - 3x)(3 - 5x) = 0

⇔ (2 - 3x)(x + 8 + 3 - 5x) = 0

⇔ (2 - 3x)(11 - 4x) = 0

⇔ 2 - 3x = 0 hay 11 - 4x = 0

⇔ 2 = 3x hay 11 = 4x

⇔ x = \(\dfrac{2}{3}\) hay x = \(\dfrac{11}{4}\)

Vậy tập nghiệm của pt S = \(\left\{\dfrac{2}{3};\dfrac{11}{4}\right\}\)

khum bt mới lớp 5 hoi à(k10)

Nguyễn Quang Minh
14 tháng 3 2022 lúc 9:34


<=> (2-3x ) (x+8) + (2-3x ) (3-5x)=0
<=> (2-3x ) ( x+8 +  3-5x ) =0 
<=> (2-3x ) ( 11 - 4x ) = 0
 => 2-3x  =0 hoặc 11-4x =0  
       3x = 2            4x =11
         x = 2/3         x    = 11/4

Tyra
Xem chi tiết
Trần Ái Linh
30 tháng 7 2021 lúc 16:01

Giống nhau tất thảy.

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 16:09

k ở đây được hiểu là "một số nguyên bất kì", giống hay khác nhau đều được

Ví dụ: 

\(sinx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Thì "k" trong \(\dfrac{\pi}{6}+k2\pi\) và "k" trong \(\dfrac{5\pi}{6}+k2\pi\) không liên quan gì đến nhau (nó chỉ là 1 kí hiệu, có thể k trên bằng 0, k dưới bằng 100 cũng được, không ảnh hưởng gì, cũng có thể 2 cái bằng nhau cũng được).

Khi người ta ghi 2 nghiệm đều là "k2pi" chủ yếu do... lười biếng (kiểu như mình). Trên thực tế, rất nhiều tài liệu cũ họ ghi các kí tự khác nhau, ví dụ 1 nghiệm là \(\dfrac{\pi}{6}+k2\pi\), 1 nghiệm là \(\dfrac{5\pi}{6}+n2\pi\) để tránh học sinh phát sinh hiểu nhầm đáng tiếc rằng "2 cái k phải giống hệt nhau về giá trị". 

Nguyễn Phúc Hưng
Xem chi tiết
dragon gaming red
21 tháng 4 2021 lúc 20:32

1, 2 và 3 :v

hà minh
Xem chi tiết
221091
14 tháng 3 2022 lúc 9:49

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2

oppa sky atmn
Xem chi tiết
Nguyễn Anh Quân
26 tháng 1 2018 lúc 20:33

+, Nếu x = 0 => ko tồn tại y thuộc Z

+, Nếu x khác 0 => x^2 >= 1 => x^2-1 >= 0

Có : y^3 = x^3+2x^2+3x+2 > x^3 ( vì 2x^2+3x+2 > 0 )

Lại có : y^3 = (x^3+3x^3+3x+1)-(x^2-1) = (x+1)^3 - (x^2-1) < = (x+1)^3

=> x^3 < y^3 < = (x+1)^3

=> y^3 = (x+1)^3

=> x^2-1 = 0

=> x=-1 hoặc x=1

+, Với x=-1 thì y = 0

+, Với x=1 thì y = 2

Vậy .............

Tk mk nha

Bùi Minh Anh
26 tháng 1 2018 lúc 22:06

Ta có: \(x^3+2x^2+3x+2=y^3\)                             (1)

Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{2}x\right)+2=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+2-2.\frac{9}{16}\)

\(=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\) Vì \(\left(x+\frac{3}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)

\(\Rightarrow y^3>x^3\Rightarrow y^3\ge\left(x+1\right)^3\)

\(\Rightarrow x^3+2x^2+3x+2\ge\left(x+1\right)^3\) \(\Rightarrow x^3+2x^2+3x+2\ge x^3+3x^2+3x+1\)

\(\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-3x-2\le0\)

\(\Rightarrow x^2-1\le0\Rightarrow x^2\le1\) Vì \(x\in Z\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)

+ TH1: x2 = 0 => x =0 Thay vào pt (1) ta được y3 = 2 (loại) vì y nguyên

+ TH2 : x2 = 1 => \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Thay x=1 vào pt (1) ta đc: 1+2+3+2 = 8 = y3 => y = 2

Thay x= -1 vào pt (1) ta đc: -1 + 2 -3 +2 = 0 =y3 => y = 0

Vậy cặp (x;y) là (1;2) ; (-1;0).

Minh Ngọc
2 tháng 2 2023 lúc 19:52

\(Xét \(2x^2+3x+2=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{16}>0\forall x\in R\) => \(x^3< y^3\left(1\right)\) (1) Giả sử : \(y^3< \left(x+2\right)^3\) \(\Leftrightarrow x^3+2x^2+3x+2< x^3+6x^2+12x+8\) \(\Leftrightarrow-4x^2-9x-6< 0\) \(\Leftrightarrow4x^2+9x+6>0\) \(\Leftrightarrow4\left(x+\dfrac{9}{8}\right)^2+\dfrac{15}{64}>0\) => Giả sử đúng . => \(y^3< \left(x+2\right)^3\left(2\right)\) Từ (1)(2) => \(y^3=\left(x+1\right)^3\) \(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^2+3x+1\) \(\Leftrightarrow x^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) .) Khi \(x=1\Rightarrow y=2\). .) Khi \(x=-1\Rightarrow y=0\) Vậy nghiệm của pt ( x;y ) = {( 1;2 ) ; ( -1;0 )}\)