Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Edogawa Conan
Xem chi tiết
Hạnh Hồng
Xem chi tiết
Dương Trương Trâm Anh
10 tháng 5 2021 lúc 16:03

Mình làm được một câu thôi, bạn dựa vào làm nha!undefined

Doctor Strange
Xem chi tiết
Trần Thị Thu Nga
17 tháng 10 2017 lúc 12:04

câu thứ 2 =0 vì (63.1,-21.3,6)=0

Doctor Strange
18 tháng 10 2017 lúc 19:09

MIK muốn hỏi câu đầu tiên

Xem chi tiết
anh ngoc
Xem chi tiết
Nguyễn Trọng Chiến
23 tháng 2 2021 lúc 21:41

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)

Dương Ngọc Ánh
Xem chi tiết
Akai Haruma
6 tháng 12 2023 lúc 15:15

Lời giải:

Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)

$\Rightarrow A< \frac{1}{50}$

Nguyễn Thị Cẩm Ly
Xem chi tiết
Luân Đào
6 tháng 12 2017 lúc 8:38

B = .................

Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0

\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)

Luân Đào
6 tháng 12 2017 lúc 8:32

Mình làm câu 1,2 trước, câu 3 sau

Câu 1:

\(\sqrt{x^2}=0\)

=> \(\left(\sqrt{x^2}\right)^2=0^2\)

\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Câu 2:

\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)

\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)

Thuy Khuat
Xem chi tiết
Trương Tuấn Nghĩa
29 tháng 10 2017 lúc 22:21

A=\(\dfrac{7^2-1}{7^4}+\dfrac{7^2-1}{7^8}+...+\dfrac{7^2-1}{7^{100}}=\left(7^2-1\right)\left(\dfrac{1}{7^4}+\dfrac{1}{7^8}+...+\dfrac{1}{7^{100}}\right)=48\cdot B\)Dễ dàng tính được B( nhân hết với 7 mũ 4 roi trừ đi, chia ra là xong) ra đpcm.

Lên lớp 11 thì ta có dạng tổng quát luôn này(tức là nếu n quá lớn thì có thể coi là xảy ra dấu bằng) \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^n}-\dfrac{1}{7^{n+2}}< \dfrac{1}{50}\)

Linh Suzu
Xem chi tiết
阮玉京族
13 tháng 2 2017 lúc 20:05

A = 1 - 2 + 3 - 4 +...+97 - 98 + 99 - 100

A = 1 + ( -2 + 3) +...+ ( -98 + 99 ) - 100

A = 1 + 1 + ... + 1 - 100

A = 50 - 100

A = -50

B = \(\frac{7}{19.29}\) + \(\frac{7}{29.39}\) + \(\frac{7}{39.49}\) + \(\frac{7}{49.59}\) + \(\frac{7}{59.69}\)

B = 7. ( \(\frac{1}{19.29}\) + \(\frac{1}{29.39}\) + \(\frac{1}{39.49}\) + \(\frac{1}{49.59}\) + \(\frac{1}{59.69}\))

B= 7. \(\frac{1}{10}\)( \(\frac{10}{19.29}\)+ \(\frac{10}{29.39}\)+ \(\frac{10}{39.49}\)+\(\frac{10}{49.59}\)+\(\frac{10}{59.69}\))

B = 7 . \(\frac{1}{10}\) ( \(\frac{1}{19}\) - \(\frac{1}{69}\) )

B = 7 . \(\frac{1}{10}\) . \(\frac{50}{1311}\)

B = \(\frac{7}{10}\) . \(\frac{50}{1311}\)

B = \(\frac{35}{1311}\)

Chúc bạn học giỏi !!! banhqua