Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Minh Anh
Xem chi tiết
Hương Giang Vũ
Xem chi tiết
Nguyễn acc 2
20 tháng 3 2022 lúc 21:39

\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)

Hương Giang Vũ
Xem chi tiết
Vô danh
20 tháng 3 2022 lúc 21:46

\(x.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\dfrac{49}{50}=1\\ \Rightarrow x=1:\dfrac{49}{50}\\ \Rightarrow x=\dfrac{50}{49}\)

Nguyễn Hương Giang
Xem chi tiết
Trần Minh Hưng
24 tháng 3 2017 lúc 21:37

Ta thấy:

\(1\cdot2^2=2^2;2\cdot3^2>3^2;3\cdot4^2>4^2;...;49\cdot50^2>50^2\)

\(\Rightarrow\dfrac{1}{1.2^2}=\dfrac{1}{2^2};\dfrac{1}{2\cdot3^2}< \dfrac{1}{3^2};\dfrac{1}{3\cdot4^2}< \dfrac{1}{4^2};...;\dfrac{1}{49\cdot50^2}< \dfrac{1}{50^2}\)

\(\Rightarrow\dfrac{1}{1\cdot2^2}+\dfrac{1}{2\cdot3^2}+\dfrac{1}{3\cdot4^2}+...+\dfrac{1}{49\cdot50^2}< \dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

hay A<B

Vậy A<B

Hòa Đình
Xem chi tiết
Akai Haruma
3 tháng 12 2017 lúc 0:22

Lời giải:

Ta có:

\(\frac{1}{1.2^2}=\frac{1}{2^2}\)

\(2.3^2>3^2\Rightarrow \frac{1}{2.3^2}< \frac{1}{3^2}\)

\(3.4^2> 4^2\Rightarrow \frac{1}{3.4^2}< \frac{1}{4^2}\)

...........

\(49.50^2> 50^2\Rightarrow \frac{1}{49.50^2}< \frac{1}{50^2}\)

Cộng theo từng vế các BĐT:

\(\Rightarrow \frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+....+\frac{1}{49.50^2}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)

\(\Leftrightarrow A< B\)

Vậy ta có đpcm.

TXT Channel Funfun
Xem chi tiết
Đào Thị Phượng
30 tháng 8 2019 lúc 14:19

Ta có A = 1 / 2 . ( 1 - 1 / 2 + 1 / 2 - 1/ 3 + ............+ 1 / 49 - 1 / 50 )

= 1/ 2 . 1 + ( -1/2 + 1/2 ) + ...........+ ( - 1/49 + 1/49 ) -1/50

=1/2 + 0 + 0 + .................+ 0 - 1/50

= 1/2 - 1/50

=12/25

Vậy A = 12/25

Ta có 12/25 < 1/2

vậy 25/12 < 1/2

LÊ TRẦN BÁCH
Xem chi tiết
Nguyễn Nhân Dương
11 tháng 9 2023 lúc 20:15

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

DSQUARED2 K9A2
11 tháng 9 2023 lúc 20:18

A = 49/50

Huỳnh Đức Duy
12 tháng 9 2023 lúc 13:51

A = 1/1.2 +1/2.3 +1/3.4 +...+1/49.50    
A = 1 +1/2 -1/2+1/3-1/3+1/4-...-1/49 +1/50    

A = 1 - 1/50   
A=49/50

 


    

 

 

 

 


 

Lê Quang Dũng
Xem chi tiết
Nguyễn Huy Tú
26 tháng 7 2017 lúc 16:46

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

Nguyễn Huy Tú
26 tháng 7 2017 lúc 16:52

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

NGUYỄN CẨM TÚ
26 tháng 7 2017 lúc 16:44

Đặt A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+.......+\dfrac{1}{3^{99}}\)

=> 3A=1+\(\dfrac{1}{3}+\dfrac{1}{3^2}+..........+\dfrac{1}{3^{98}}\)

=> 3A-A= 1-\(\dfrac{1}{3^{99}}\)

=> A=\(\dfrac{1}{2}-\dfrac{1}{3^{99}.2}\)

=> A<1/2

Vậy A<1/2

Vũ Thị Khánh Huyền
Xem chi tiết
Luân Đào
10 tháng 1 2018 lúc 18:35

a,

\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)+\sqrt{2}\cdot\dfrac{\sqrt{2^5}}{1-\sqrt{9}}\)

\(=2^2-\left(\sqrt{3}\right)^2+\dfrac{\sqrt{2}\cdot\sqrt{2^5}}{1-3}=4-3+\dfrac{\sqrt{2^6}}{-2}=1+\dfrac{8}{-2}=1+\left(-4\right)=-3\)

b,

\(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}\right)\cdot\dfrac{49}{50}\)

\(=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\cdot\dfrac{49}{50}\)

\(=\left(1-\dfrac{1}{50}\right)\cdot\dfrac{49}{50}=\dfrac{49}{50}\cdot\dfrac{49}{50}=\dfrac{49^2}{50^2}=\dfrac{2401}{2500}\)