(3m-2)x^2+3x-5=0 là pt bậc nhất khi:
a) m # 3
b) m # 2
c) m # 2/3
d) m # -2/3
Cho phương trình : ( 2 -4m ) x - 3m +5=0
Tìmm để pt là Pt bậc nhất 1 ẩn
Tìm m để pt có nghiệm là x=-2
chờ đi ăn xong gửi cho
a)Giá trị của phương trình được xác định khi 2-4m khác 0 và x-3m khác 0
=> -4m khác -2 và -3m khác -x
=>m khác -2:-4=1 phần 2 và m khác x phần 3
b)Vì m phải khác -2
Nên không có số nào thõa mãn cho phương trình trên đễ pt có nghiệm là -2
Nhớ k đúng
Cho pt bậc 2 x^2+5x+3m=0 (m là tham số) A) thay m=0 rồi giải pt đã cho B) tìm m để pt x^2+5x+3m=0 có 2 nghiệm phân biệt
a) Với m=0
=> pt <=> \(x^2+5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b) \(x^2+5x+3m=0\)
\(\Delta=25-12m\)
Để phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow25-12m>0\)
\(\Leftrightarrow m< \dfrac{25}{12}\)
Cho pt: 2(m-2)x +3 = 3m -13 (1)
a, Tìm m để pt (1) là pt bậc nhất một ẩn.
b, Với giá trị nào của m thì pt (1) tương đương với pt 3x + 7 = 2(x-1) +8 (2)
cho pt :2(m-2)x+3=3m-13 (1) a)tìm m để pt (1) là phương trình bậc nhất một ẩn. b)với giá trị nào của m thì phương trình (1) tương đương với phương trình: 3x+7=2(x-1)=8 (2)
a: Để phương trình là phươg trình bậc nhất một ẩn thì m-2<>0
hay m<>2
b: Ta có: 3x+7=2(x-1)+8
=>3x+7=2x-2+8
=>3x+7=2x+6
=>x=-1
Thay x=-1 vào (1), ta được:
-2(m-2)+3=3m-13
=>-2m+4+3=3m-13
=>-2m+7=3m-13
=>-5m=-20
hay m=4(nhận)
cho PT (3m-2)*x+5=m.a)Với giá trị của m thì PT đã cho là phương trình bậc nhất 1 ẩn?b)Tìm m sao cho phương trình nhận x=-2 làm nghiệm
Phương trình ( m - 1 ) x + m _ 5 = 0 ( m là tham số ) là phương trình bậc nhất 1 ẩn khi:
A. m khác -1
B. m khác 0
C. m khác 1
D. m khác 5
cho Pt x^2+5x-3m=0 a) tìm m để PT có 2 nghiệm x1,x2 b) với m ở câu a lập 1 PT bậc 2 có 2 nghiệm là 2/x1^2 và 2/x2^2
\(a,\) \(x^2+5x-3m=0\left(1\right)\)
\(\Rightarrow\Delta=b^2-4ac=5^2-4.\left(-3m\right)=12m+25\)
\(Để\) phương trình \((1)\) có 2 nghiệm \(x_1,x_2\) ta có :
\(\Leftrightarrow\Delta\ge0\Rightarrow12m+25\ge0\)
\(\Rightarrow12m\ge-25\Rightarrow m\ge\dfrac{-25}{12}\)
a) x²+5x−3m=0 ⇒Δ=b²−4ac=52−4·(−3m)=12m+25
Để phương trình có 2 nghiệm $x_{1}$, $x_{2}$ ta có :
⇔Δ≥0⇒12m+25≥0
⇒12m≥−25
⇒m≥$\frac{-25}{12}$
b) Theo Viète ta có:
$\left \{ {{x_{1}+x_{2}=-5} \atop {x_{1}x_{2}=-3m}} \right. $
Ta có: $\frac{2}{x_{1}}$ + $\frac{2}{x_{2}}$ = $\frac{2x_{1} + 2x_{2}}{x_{1}^{2}x_{2}^{2}}$ = $\frac{2(x_{1}^{2}+x_{2}^{2})}{(x_{1}x_{1})^{2}}$ = $\frac{50+12m}{9m^2}$
$\frac{2}{x_{1}}$ · $\frac{2}{x_{2}}$ = $\frac{4}{(x_{1}x_{1})^{2}}$ =$\frac{4}{9m^2}$
Vậy $\frac{2}{x_{1}}$ và $\frac{2}{x_{2}}$ là 2 $n_{0}$ của phương trình:
${x^2}$ - $\frac{50+12m}{9m^2}$ $x$ + $\frac{4}{9m^2}$ = 0
a) x²+5x−3m=0
Để phương trình có 2 nghiệm $x_{1}$, $x_{2}$ ta có :
⇔ Δ ≥ 0 ⇒ 12m+25 ≥ 0
⇒12m≥−25 ⇒m≥$\frac{-25}{12}$
b) Theo Viète ta có: $\left \{ {{x_{1}+x_{2}=-5} \atop {x_{1}x_{2}=-3m}} \right. $
Ta có: $\frac{2}{x_{1}^2}$ + $\frac{2}{x_{2}^2}$ = $\frac{2x_{1}^2 + 2x_{2}^2}{x_{1}^{2}x_{2}^{2}}$ = $\frac{2(x_{1}^{2}+x_{2}^{2})}{(x_{1}x_{1})^{2}}$ = $\frac{50+12m}{9m^2}$
$\frac{2}{x_{1}^2}$ · $\frac{2}{x_{2}^2}$ = $\frac{4}{(x_{1}x_{1})^{2}}$ =$\frac{4}{9m^2}$
Vậy $\frac{2}{x_{1}^2}$ và $\frac{2}{x_{2}^2}$ là 2 $n_{0}$ của phương trình:
${x^2}$ - $\frac{50+12m}{9m^2}$ $x$ + $\frac{4}{9m^2}$ = 0
Câu 1.Tìm điều kiện của x để \(\sqrt{\dfrac{-1}{1-x}}\) có nghĩa?
A. x < 1 B. x > 1 C. x ≥ 0 D. x ≤ 1
Câu 2. Hàm số \(y=\sqrt{2015-m}.x+5\) là hàm số bậc nhất khi:
A. m ≤ 2015 B. m < 2015 C. m > 2015 D. m ≥ 2015
Câu 3. Tìm k để đường thẳng \(y=\left(2k+1\right)x+3\) nghịch biến trên R.
A. k ≤ \(\dfrac{-1}{2}\) B. k < \(\dfrac{-1}{2}\) C. k < -1 D. k ≤ -1
Câu 4. Cho hàm số: \(y=f\left(x\right)=\dfrac{2}{x+1}\) .Biến số x có thể có giá trị nào sau đây:
A. x ≤ -1 B. x ≥ -1 C. x ≠ 0 D. x ≠ -1
cho pt: mx +3m=3x-2 (1)
a) tìm m để pt(1) tương đương với pt (x-2)^2-x(x-3)-3=0 (2)
b)tìm điều kiện m để pt (1) vô nghiệm
c)tìm m để pt (1) có nghiệm duy nhất nguyên